
The Logical Approach to Automatic Sequences
Part 5: Fibonacci- and Tribonacci-Automatic Sequences...

and Beyond

Jeffrey Shallit
School of Computer Science, University of Waterloo

Waterloo, Ontario N2L 3G1, Canada
shallit@cs.uwaterloo.ca

https://cs.uwaterloo.ca/~shallit

1 / 54

Beyond base-k expansions

Can our methods (the decision procedure to prove theorems; linear
representations for enumeration) be extended further?

What ingredients do we need?

I A method to represent elements of N as strings

I An automaton to test equality of two such representations
(easiest thing: have a notion of canonical expansion)

I An “adder”: an automaton to test the proposition x + y = z

2 / 54

Fibonacci (Zeckendorf) representation

I Fibonacci numbers: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

I In analogy with base-2 representation, we can represent every
non-negative integer in the form∑

0≤i≤t
εiFi+2 with εi ∈ {0, 1}.

3 / 54

Fibonacci (Zeckendorf) representation

I But then some integers have multiple representations, e.g.,
14 = 13 + 1 = 8 + 5 + 1 = 8 + 3 + 2 + 1

I So we impose the additional condition that εiεi+1 = 0 for all
i : never use two adjacent Fibonacci numbers.

I Usually we write the representation in the form

εtεt−1 · · · ε0,
with most significant digit first. So, for example, 19 is
represented by 101001. This is called Fibonacci representation
or Zeckendorf representation.

Edouard Zeckendorf (1901–1983)
4 / 54

Fibonacci-automatic infinite words

I Consider a finite automaton that takes Fibonacci
representation of n as input

I Outputs are associated with the last state reached

I Invalid inputs (those with two consecutive 1’s) are rejected or
not considered

I An infinite word results from feeding the canonical
representation of each n ≥ 0 into the automaton

I Example: the Fibonacci infinite word

f = 0100101001001 · · ·

5 / 54

The Fibonacci decision procedure

I Exactly like before, except now all integers are represented in
Fibonacci representation

I Comparison is easy

I Addition is harder; need an adder

I There is a 17-state automaton that on input (x , y , z) in
Fibonacci representation will determine whether x + y = z

I Based on ideas originally due to Jean Berstel and since
elaborated by others: Frougny, Sakarovitch, etc.

6 / 54

The infinite Fibonacci word

The most famous Fibonacci-automatic word is the Fibonacci word

f = 0100101001001010010100100101001001 · · · ,

which can be defined in various ways.
One way is the fixed point of the morphism ϕ(0) = 01, ϕ(1) = 0.
Another way is the automaton

0/0

0

1/1
1

0

7 / 54

The infinite Fibonacci word

Yet another way is through the recursion

X1 = 1

X2 = 0

Xn = Xn−1Xn−2, (n ≥ 2)

So X3 = 01, X4 = 010, X5 = 01001, etc.

Note that |Xn| = Fn.

The (Xn)n≥1 are called the finite Fibonacci words, and for n ≥ 2
they are all prefixes of f.

8 / 54

The Fibonacci word

Properties of the infinite Fibonacci word f have been widely
studied, e.g.:

I f is not ultimately periodic

I f contains no 4th powers (Karhumäki, 1983)

I All squares in f are of order Fn for n ≥ 2, and squares of all
these lengths exist (Séébold, 1985)

I There exist palindromes of all lengths in f (Chuan, 1993)

All of these claims can easily be verified using our method.

9 / 54

An extended example: avoiding the pattern xxxR

I Recall that by xR we mean the reversal of the string x . For
example, (stressed)R = desserts in English;
(relativ)R = vitaler in German.

I We are interested in avoiding the pattern xxxR in binary
words.

I An example of the pattern xxxR in English is contained in the
word

bepepper.

I Examples in German: Wiedererreichen (reattainment) and
besessen (obsessed)

I Are there infinite binary words avoiding this pattern?

10 / 54

An extended example: avoiding the pattern xxxR

I We start by trying depth-first search of the space of binary
words

I If there is a word avoiding the pattern, this procedure will give
the lexicographically least such sequence.

I When we do, we get the word

(001)3(10)ω = 001001001101010 · · · .

I So in particular the word (10)ω = 101010 · · · avoids the
pattern. (Easy proof!)

I This suggests: are there any other periodic infinite words
avoiding xxxR?

I Also: are there any aperiodic infinite words avoiding xxxR?

11 / 54

An extended example: avoiding the pattern xxxR

When we search for other primitive words z such that zω avoids
the pattern, we find there are some of length 10:

0010011011 0011011001 0100110110 0110010011 0110110010

1001001101 1001101100 1011001001 1100100110 1101100100

I We notice that each of these words is of the form ww .

I This suggests looking at words of this form.

I The next ones are w = 001001001101100100100, and its
shifts and complements.

12 / 54

An extended example: avoiding the pattern xxxR

I To summarize, here are the solutions we’ve found so far:

w |w |
01 2

00100 5
001001001101100100100 21

I The presence of the numbers 2,5,21 suggests some connection
with the Fibonacci numbers: these are F2,F5,F8.

13 / 54

An aperiodic word avoiding xxxR

I Suppose we take the run-length encodings of the strings of
length 21. One of them looks familiar: 2122121221221. This
is a prefix of the infinite Fibonacci word generated by 2→ 21,
1→ 2.

I This suggests the construction of an infinite aperiodic word
avoiding xxxR : take the infinite Fibonacci word, and use it as
“repetition factors” for 0 and 1 alternating. This gives the
infinite word

R = 001001101101100100110 · · ·

which we conjecture avoids xxxR .

I Can we find an automaton generating this sequence? Yes, but
now it is not based on base-2 representations, but rather
Fibonacci (or “Zeckendorf”) representations.

14 / 54

Avoiding xxxR

Another way to describe the word R is as follows:

Take the infinite Fibonacci word f and run it through the following
transducer:

0 1

0 /00

1 /0

0 /11

1 /1

obtaining the infinite word

R = 001001101101100100110110110010010011011001001001101100 · · · .

Claim: it avoids the patterns xxxR and also xxRxR .

15 / 54

An aperiodic word avoiding xxxR

I We can try to find an automaton for R using a “guess and
test” procedure.

I When we do, we get the following automaton of 8 states.

a/0 b1/0 a1/1 b0/0 b/1 a0/0 a2/1 b2/1

0

1 0 1

0

0

0

1

0

0

1

0

Figure : Fibonacci automaton generating the sequence R

16 / 54

An aperiodic word avoiding xxxR

I We now have the conjecture that the word generated by this
automaton (a) is aperiodic and (b) avoids xxxR and (c)
avoids xxRxR .

I All three conjectures can be proved using our decision
procedure.

I We just need to write predicates for them:

I Ultimate periodicity:

∃p ≥ 1 ∃N ≥ 0 ∀i ≥ N R[i] = R[i + p].

I Has xxxR :
∃i ≥ 0 ∃n ≥ 1 ∀t < n

(R[i + t] = R[i + t + n]) ∧ (R[i + t] = R[i + 3n − 1− t]).

17 / 54

The new result

Has xxRxR :
∃i ≥ 0 ∃n ≥ 1 ∀t < n

(R[i + t] = R[i + 2n − 1− t]) ∧ (R[i + n + t] = R[i + 2n + t]).

Using Walnut, we can prove

Theorem. The Fibonacci-automatic word R generated by the
automaton above is

(a) aperiodic and

(b) has no instances of the pattern xxxR for x nonempty and

(c) also has no instances of the pattern xxRxR for x nonempty.

18 / 54

Theorems about the finite Fibonacci words

I Since every finite Fibonacci word is a prefix of length Fn of the
infinite Fibonacci word, we can rephrase many claims about
the finite Fibonacci words in terms of our logical language

I There are two possible approaches: we can state these claims
for length-n prefixes and ask for which n they are satisfied

I Or we can additionally restrict n in our logical language to
have Fibonacci representation of the form 10∗

19 / 54

Example claim about the finite Fibonacci words

To illustrate this idea, consider one of the most famous properties
of the Fibonacci words, the almost-commutative property: letting
η(a1a2 · · · an) = a1a2 · · · an−2anan−1 be the map that interchanges
the last two letters of a string of length at least 2, we have

Theorem
Xn−1Xn = η(XnXn−1) for n ≥ 2.

We can verify this, and prove even more, using our method.

Theorem
Let x = f[0..i − 1] and y = f[0..j − 1] for i > j > 1. Then
xy = η(yx) if and only if i = Fn, j = Fn−1 for n ≥ 3.

20 / 54

Proof of the almost-commutative property

Proof.
The idea is to check, for each i > j > 1, whether

f[0..i − 1]f[0..j − 1] = η(f[0..j − 1]f[0..i − 1]).

We can do this with the following formula:

(i > j) ∧ (j ≥ 2) ∧ (∀t, j ≤ t < i , f[t] = f[t − j]) ∧
(∀s ≤ j−3 f[s] = f[s+i−j]) ∧ (f[j−2] = f[i−1]) ∧ (f[j−1] = f[i−2]).

The resulting automaton accepts [1, 0][0, 1][0, 0]+, which
corresponds to i = Fn, j = Fn−1 for n ≥ 4.

21 / 54

Fibonacci-regular words and enumeration

I In many cases we can count the number T (n) of length-n
factors of a Fibonacci-automatic sequence having a particular
property P.

I Here by “count” we mean, give an algorithm A to compute
T (n) efficiently, that is, in time bounded by a polynomial in
log n.

I Although finding the algorithm A may not be particularly
efficient, once we have it, we can compute T (n) quickly.

22 / 54

Reproving (and fixing) a result of Fraenkel and Simpson

We turn to a result of Fraenkel and Simpson (1999). They
computed the exact number of occurrences of all squares
appearing in the finite Fibonacci words Xn.
To solve this using our approach, we generalize the problem to
consider any length-n prefix of f.
The total number of square occurrences in f[0..n − 1]:

Ldos := {(n, i , j)F : i +2j ≤ n and f[i ..i +j−1] = f[i +j ..i +2j−1]}.

Let b(n) denote the number of occurrences of squares in
f[0..n − 1]. First, we use our method to find a DFA M accepting
Ldos. This (incomplete) DFA has 27 states.

23 / 54

Reproving (and fixing) a result of Fraenkel and Simpson

Next, we compute matrices M0 and M1, indexed by states of M,
such that (Ma)k,l counts the number of edges (corresponding to
the variables i and j) from state k to state l on the digit a of n.
We also compute a vector u corresponding to the initial state of M
and a vector v corresponding to the final states of M. This gives
us the following linear representation of the sequence b(n):
if x = a1a2 · · · at is the Fibonacci representation of n, then

b(n) = uMa1 · · ·Mat v , (1)

which, incidentally, gives a fast algorithm for computing b(n) for
any n.

24 / 54

Reproving (and fixing) a result of Fraenkel and Simpson

Now let B(n) denote the number of square occurrences in the
finite Fibonacci word Xn.
This corresponds to considering the Fibonacci representation of the
form 10n−1; that is, B(n + 1) = b([10n]F).
The matrix M0 is the following 27× 27 array

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

25 / 54

Reproving (and fixing) a result of Fraenkel and Simpson

I M0 has minimal polynomial

X 4(X − 1)2(X + 1)2(X 2 − X − 1)2.

I It follows from the theory of linear recurrences that there are
constants c1, c2, . . . , c8 such that

B(n+1) = (c1n+c2)αn+(c3n+c4)βn+c5n+c6+(c7n+c8)(−1)n

for n ≥ 3, where α = (1 +
√

5)/2, β = (1−
√

5)/2 are the
roots of X 2 − X − 1.

I We can find these constants by computing
B(4),B(5), . . . ,B(11) and then solving for the values of the
constants c1, . . . , c8.

26 / 54

Reproving (and fixing) a result of Fraenkel and Simpson

When we do so, we find

c1 =
2

5
c2 = − 2

25

√
5− 2 c3 =

2

5

c4 =
2

25

√
5− 2 c5 = 1 c6 = 1

c7 = 0 c8 = 0

A little simplification, using the fact that Fn = (αn − βn)/(α− β),
leads to

Theorem
Let B(n) denote the number of square occurrences in Xn. Then

B(n + 1) =
4

5
nFn+1 −

2

5
(n + 6)Fn − 4Fn−1 + n + 1

for n ≥ 3.

This statement corrects a small error in their paper.
27 / 54

Counting cube occurrences in finite Fibonacci words

In a similar way, we can count the cube occurrences in Xn. Using
analysis exactly like the square case, we easily find

Theorem
Let C (n) denote the number of cube occurrences in the Fibonacci
word Xn. Then for n ≥ 3 we have

C (n) = (d1n + d2)αn + (d3n + d4)βn + d5n + d6

where

d1 =
3−
√

5

10
d2 =

17

50

√
5− 3

2

d3 =
3 +
√

5

10
d4 = −17

50

√
5− 3

2
d5 = 1 d6 = −1.

28 / 54

Beyond Fibonacci... Tribonacci!

Define the Tribonacci numbers (Tn)n≥0 by

Tn =

0, if n = 0;

1, if n = 1 or n = 2;

Tn−1 + Tn−2 + Tn−3, if n ≥ 3.

Here are the first few terms:

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Tn 0 1 1 2 4 7 13 24 44 81 149 274 504

29 / 54

Tribonacci representation

Theorem (Carlitz-Scoville-Hoggatt, 1972)

Every integer n ≥ 0 has a unique representation as a sum of
Tribonacci numbers of index ≥ 2, provided no three consecutive
indices are used.

Thus, for example,

43 = T7 + T6 + T4 + T2

= 24 + 13 + 4 + 2.

We can associate each such representation of n with a binary word
(n)T indicating whether a term is included in the representation.
Thus, (43)T = 110110.

30 / 54

The infinite Tribonacci word

The infinite Tribonacci word TR is the fixed point, starting with 0,
of the morphism

0→ 01, 1→ 02, 2→ 0.

Here are the first few terms:

TR = 01020100102010102010010201020100102010102010 · · ·

Alternatively, TR[n] can be computed by looking at the Tribonacci
representation of n. It is

I 0, if the Tribonacci representation of n ends in a 0;

I 1, if the Tribonacci representation of n ends in a single 1;

I 2, if the Tribonacci representation of n ends in two 1’s.

31 / 54

Tribonacci-automatic sequences

From the previous slide, it follows that TR can be computed by an
automaton that takes, as input, the Tribonacci representation of n
and outputs TR[n]:

Any sequence that can be computed similarly is called
Tribonacci-automatic.

32 / 54

Aperiodicity

Theorem
The word TR is not ultimately periodic.

Proof.
We construct a formula asserting that the integer p ≥ 1 is a period
of some suffix of TR:

(p ≥ 1) ∧ ∃n ∀i ≥ n TR[i] = TR[i + p].

The resulting automaton accepts nothing, so TR is not ultimately
periodic.

33 / 54

Fourth powers

Theorem
TR contains no fourth powers.

Proof.
A formula for the orders of all fourth powers occurring in TR:

(n > 0) ∧ ∃i ∀t < 3n TR[i + t] = TR[i + n + t].

However, this did not run to completion on our prover. (It ran out
of space while trying to determinize an NFA with 24904 states.)

Instead, substitute j = i + t, obtaining the new formula

(n > 0) ∧ ∃i ∀j ((j ≥ i) ∧ (j < i + 3n)) =⇒ TR[j] = TR[j + n].

The resulting automaton accepts nothing, so there are no fourth
powers. The largest intermediate automaton in the computation
had 86711 states.

34 / 54

Orders of squares

The order of a square xx is |x |, the length of x .

Theorem (Glen, 2006)

All squares in TR are of order Tn or Tn + Tn−1 for some n ≥ 2.
Furthermore, for all n ≥ 2, there exists a square of order Tn and
Tn + Tn−1 in TR.

Proof.
A natural formula for the orders of squares is

(n > 0) ∧ ∃i ∀t < n TR[i + t] = TR[i + n + t].

but this did not run to completion on our prover.
Instead, introduce a new variable j = i + t. This gives

(n > 0) ∧ ∃i ∀j ((i ≤ j) ∧ (j < i + n)) =⇒ TR[j] = TR[j + n].

35 / 54

More about orders of squares

By modifying our previous formula, we get

(n > 0) ∧ ∀j ((i ≤ j) ∧ (j < i + n)) =⇒ TR[j] = TR[j + n]

which encodes those (i , n) pairs such that there is a square of
order n beginning at position i of TR.

This automaton has only 10 states and efficiently encodes both the
orders and starting positions of each square in TR.

36 / 54

More about orders of squares

Thus we have proved the following new result:

Theorem
The language

{(i , n)T : there is a square of order n beginning at position i in TR}

is accepted by the following automaton:

37 / 54

Cubes

Theorem (Glen, 2006)

The cubes in TR are of order Tn for n ≥ 5, and a cube of each
such order occurs.

Proof.
We use the formula

(n > 0) ∧ ∃i ∀j ((i ≤ j) ∧ (j < i + 2n)) =⇒ TR[j] = TR[j + n].

When we run our program, we obtain an automaton accepting
exactly the language (1000)0∗, which corresponds to Tn for n ≥ 5.
The largest intermediate automaton had 60743 states.

38 / 54

Enumeration

We can also mechanically enumerate many properties of
Tribonacci-automatic sequences.

For example, we can encode the factors having a given property
property in terms of paths of an automaton. This gives the
concept of Tribonacci-regular sequence.

Every Tribonacci-regular sequence (a(n))n≥0 has a linear
representation (u, µ, v) where u and v are row and column vectors,
respectively, and µ : Σ2 → Nd×d is a matrix-valued morphism,
where µ(0) = M0 and µ(1) = M1 are d × d matrices for some
d ≥ 1, such that

a(n) = u · µ(x) · v

whenever [x]T = n. The rank of the representation is the integer
d .

39 / 54

Enumeration

If x is an infinite word, the subword complexity function ρx(n)
counts the number of distinct factors of length n.

Theorem
If x is Tribonacci-automatic, then the subword complexity function
of x is Tribonacci-regular.

Using our implementation, we can obtain a linear representation of
the subword complexity function for TR. An obvious choice is to
use the language

{(n, i)T : ∀j < i TR[i ..i + n − 1] 6= TR[j ..j + n − 1]},

based on a formula that expresses the assertion that the factor of
length n beginning at position i has never appeared before. Then,
for each n, the number of corresponding i gives ρTR(n).
However, this does not run to completion in our implementation.

40 / 54

Enumeration

Instead, substitute u = j + t and and k = i − j to get the formula

∀k ((k > 0) ∧ (k ≤ i)) =⇒
(∃u ((u ≥ j) ∧ (u < n + j) ∧ (TR[u] 6= TR[u + k]))).

This formula is close to the upper limit of what we can compute
using our program.

The largest intermediate automaton had 1230379 states and the
program took 12323.82 seconds, giving us a linear representation
(u, µ, v) of rank 22.

When we minimize this representation...

41 / 54

Enumeration

We get the rank-12 linear representation

u = [1 0 0 0 0 0 0 0 0 0 0 0]

M0 =

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
−1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
−1 0 1 0 0 0 1 0 0 0 0 0
−2 0 1 0 1 0 1 0 0 0 0 0
−3 0 2 0 1 0 1 0 0 0 0 0
−4 0 2 0 2 0 1 0 0 0 0 0
−5 0 2 0 2 0 2 0 0 0 0 0
−6 0 2 0 3 0 2 0 0 0 0 0
−10 0 3 0 4 0 4 0 0 0 0 0

M1 =

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

v = [1 3 5 7 9 11 15 17 21 29 33 55]R .

Comparing this to an independently-derived linear representation of
the function n→ 2n + 1, we see they are the same. Thus we get

Theorem (Droubay-Justin-Pirillo, 2001)

The subword complexity function of TR is 2n + 1.
42 / 54

The finite Tribonacci words

The finite Tribonacci words (Yn)n≥0 are defined as follows:

Y0 = ε

Y1 = 2

Y2 = 0

Y3 = 01

Yn = Yn−1Yn−2Yn−3 for n ≥ 4.

Note that Yn, for n ≥ 2, is the prefix of length Tn of TR.

Our method can also prove interesting things about the finite
Tribonacci words.

43 / 54

Counting the square occurrences in the finite Tribonacci
words

What is the exact number of square occurrences in the finite
Tribonacci words Yn?

To solve this using our approach, we first generalize the problem to
consider any length-n prefix of Yn, and not simply the prefixes of
length Tn.

The formula represents the number of distinct squares in
TR[0..n − 1]:

Lds := {(n, i , j)T : (j ≥ 1) and (i + 2j ≤ n)

and TR[i ..i + j − 1] = TR[i + j ..i + 2j − 1]

and ∀i ′ < i TR[i ′..i ′ + 2j − 1] 6= TR[i ..i + 2j − 1]}.
This formula asserts that TR[i ..i + 2j − 1] is a square occurring in
TR[0..n − 1] and that furthermore it is the first occurrence of this
particular word in TR[0..n − 1].

44 / 54

Counting the square occurrences in the finite Tribonacci
words

This represents the total number of occurrences of squares in
TR[0..n − 1]:

Ldos := {(n, i , j)T : (j ≥ 1) and (i + 2j ≤ n) and

TR[i ..i + j − 1] = TR[i + j ..i + 2j − 1]}.

This formula asserts that TR[i ..i + 2j − 1] is a square occurring in
TR[0..n − 1].
Unfortunately, applying our enumeration method to this suffers
from the same problem as before, so we rewrite it as

(j ≥ 1)∧ (i+2j ≤ n) ∧∀u ((u ≥ i)∧(u < i+j)) =⇒ TR[u] = TR[u+j]

When we compute the linear representation of the function
counting the number of such i and j , we get a linear representation
of rank 63.

45 / 54

Counting the square occurrences in the finite Tribonacci
words

Now we compute the minimal polynomial of M0, which is
(x − 1)2(x2 + x + 1)2(x3 − x2 − x − 1)2. Solving a linear system in
terms of the roots (or, more accurately, in terms of the sequences
1, n, Tn, Tn−1, Tn−2, nTn, nTn−1, nTn−2) gives

Theorem
The total number of occurrences of squares in the Tribonacci word
Yn is

c(n) =
n

22
(9Tn−Tn−1−5Tn−2)+

1

44
(−117Tn+30Tn−1+33Tn−2)+n−7

4

for n ≥ 5.

46 / 54

Cube occurrences

In a similar way, we can count the occurrences of cubes in the
finite Tribonacci word Yn. Here we get a linear representation of
rank 46. The minimal polynomial for M0 is
x4(x3 − x2 − x − 1)2(x2 + x + 1)2(x − 1)2. Using analysis exactly
like the square case, we find

Theorem
Let C (n) denote the number of cube occurrences in the Tribonacci
word Yn. Then for n ≥ 3 we have

C (n) =
1

44
(Tn+2Tn−1−33Tn−2)+

n

22
(−6Tn+8Tn−1+7Tn−2)+

n

6

− 1

4
[n ≡ 0 (mod 3)] +

1

12
[n ≡ 1 (mod 3)]− 7

12
[n ≡ 2 (mod 3)].

Here [P] is Iverson notation, and equals 1 if P holds and 0
otherwise.

47 / 54

Orders and positions of cubes

Next, we encode the orders and positions of all cubes. We build a
DFA accepting the language

{(i , n)T : (n > 0) ∧ ∀j ((i ≤ j)∧(j < i+2n)) =⇒ TR[j] = TR[j+n]}.

Theorem
The language

{(n, i)T : there is a cube of order n beginning at position i in TR}

is accepted by the automaton below:

48 / 54

Palindromes

We now turn to a characterization of the palindromes in TR. Once
again, it turns out that the obvious formula

∃i ∀j < n TR[i + j] = TR[i + n − 1− j],

resulted in an intermediate NFA of 5711 states that we could not
successfully determinize.

Instead, we used two equivalent formulas. The first accepts n if
there is an even-length palindrome, of length 2n, centered at
position i :

∃i ≥ n ∀j < n TR[i + j] = TR[i − j − 1].

The second accepts n if there is an odd-length palindrome, of
length 2n + 1, centered at position i :

∃i ≥ n ∀j (1 ≤ j ≤ n) =⇒ TR[i + j] = TR[i − j].

49 / 54

Palindromes

Theorem
There exist palindromes of every length ≥ 0 in TR.

Proof.
For the first formula, our program outputs the automaton below.
It clearly accepts the Tribonacci representations for all n.

50 / 54

Palindrome positions

We could also characterize the positions of all nonempty
palindromes. To illustrate the idea, we generated an automaton
accepting (i , n) such that TR[i − n..i + n − 1] is an (even-length)
palindrome.

51 / 54

Palindromic prefixes

The prefixes are factors of particular interest. Let us determine
which prefixes are palindromes:

Theorem
The prefix TR[0..n − 1] of length n is a palindrome if and only if
n = 0 or (n)T ∈ 1 + 11 + 10(010)∗(00 + 001 + 0011).

Proof.
We use the formula ∀i < n TR[i] = TR[n− 1− i]. The automaton
generated is given below.

52 / 54

Going even further

I Adders exist for numeration systems based on Pisot numbers:
these are real numbers > 1 all of whose conjugates lie inside
the unit circle. So we can create decision procedures for these
numeration systems, too.

I The paperfolding words: this is an uncountable class of
non-automatic sequences encoded by infinite words: we can
prove theorems about uncountably many different sequences
simultaneously!

I The Sturmian words: modulo a few details which still need to
be proven, Luke Schaeffer could show that there is a decidable
theory for these words, too.

53 / 54

In summary

I The logic-based approach gives a powerful way to state,
decide, and enumerate properties of automatic sequences and
their generalizations

I It allows proving, in generality, many particular cases that
already appeared in the literature, using a unified framework

I Although the worst-case running time of the decision
procedure is formidable, an implementation often succeeds in
proving useful results

54 / 54

