Chemistry 1 Volume 4

Worksheet 20 Balancing Redox Reactions in Acidic Solution Ion/Electron Method Part 5

Rules for balancing redox reactions in acidic solution:

- 1. Write the net ionic equation.
- 2. Write half-reactions.
- 3. Balance atoms other than hydrogen and oxygen.
- 4. Balance oxygen by adding H_2O .
- 5. Balance H by adding H⁺.
- 6. Balance the charges by adding e⁻.
 - a. Add up the total charge on each side.
 - b. Add electrons to the more positive side to balance the charge on both sides.
- 7. Multiply to balance the electrons gained/lost between the two half-reactions and add reactions together.
- 8. Cancel common species on both sides of the reaction.

 $NO + H_5IO_6 \rightarrow NO_3^- + IO_3^-$

 $Cr_2O_7^{2-} + C_2H_6O \rightarrow Cr^{3+} + C_2H_4O$

 $CH_3CHO + MnO_4^- \rightarrow Mn^{2+} + CH_3COOH$

 $O^{2-} + F_2 \rightarrow O_2 + F^-$

 $PbO_2 + I_2 \rightarrow Pb^{2+} + IO_3^{-1}$

Answer Key

1. Balance the redox reaction below that is in acidic solution:

 $NO + H_5IO_6 \rightarrow NO_3^- + IO_3^-$

Step 1: The net ionic equation is already written, so we can go to rule 2.

Step 2: Break into half-reactions.

 $NO \rightarrow NO_3^-$

 $H_5IO_6 \rightarrow IO_3^-$

Step 3: All elements other than O or H are already balanced.

 $NO \rightarrow NO_3^-$

 $H_5IO_6 \rightarrow IO_3^-$

Step 4: Balance O by adding H₂O.

 $2 H_2O + NO \rightarrow NO_3^-$

 $H_5IO_6 \rightarrow IO_3^- + 3 H_2O$

Step 5: Balance H by adding H⁺.

 $2 H_2O + NO \rightarrow NO_3^- + 4 H^+$

 $H^+ + H_5 IO_6 \rightarrow IO_3^- + 3 H_2O$

Step 6:

Balance charges by adding e⁻.

 $2 H_2O + NO \rightarrow NO_3^- + 4 H^+ + 3 e^ 2 e^- + H^+ + H_5IO_6 \rightarrow IO_3^- + 3 H_2O$

Step 7:

Multiply the half-reactions in order to balance electrons and add them together.

$$2 \times [2 H_2O + NO \rightarrow NO_3^- + 4 H^+ + 3 e^-]$$

$$3 \times [2 e^- + H^+ + H_5IO_6 \rightarrow IO_3^- + 3 H_2O]$$

6 e⁻ + 3 H⁺ + 3 H₅IO₆ + 4 H₂O + 2 NO \rightarrow 2 NO₃⁻ + 8 H⁺ + 6 e⁻ + 3 IO₃⁻ + 9 H₂O

Step 8: Cancel common species.

 $6e^{-+}3H^{+}+3H_{5}IO_{6}+4H_{2}O+2NO \rightarrow 2NO_{3}^{-}+58H^{+}+6e^{-+}3IO_{3}^{-}+59H_{2}O$

Now is a good time to make sure all elements and charges are balanced.

 $3 H_5 IO_6 + 2 NO \rightarrow 2 NO_3^- + 5 H^+ + 3 IO_3^- + 5 H_2O$

Reactants		Products	
Н	15	Н	15
I	3	I	3
0	20	0	20
Ν	2	Ν	2
Charge	0	Charge	0

Everything is balanced!

Correct answer:

 $3 H_5 IO_6 + 2 NO \rightarrow 2 NO_3^- + 5 H^+ + 3 IO_3^- + 5 H_2O$

$$Cr_2O_7^{2-} + C_2H_6O \rightarrow Cr^{3+} + C_2H_4O$$

Step 1:

The net ionic equation is already written, so we can go to rule 2.

Step 2: Break into half-reactions.

 $C_2H_6O \rightarrow C_2H_4O$

 $Cr_2O_7^{2-} \rightarrow Cr^{3+}$

Step 3: Balance all elements other than O or H.

 $C_2H_6O \rightarrow C_2H_4O$

 $Cr_2O_7^{2-} \rightarrow 2 Cr^{3+}$

Step 4: Balance O by adding H₂O.

 $C_2H_6O \rightarrow C_2H_4O$

 $Cr_2O_7^{2-} \rightarrow 2 Cr^{3+} + 7 H_2O$

Step 5: Balance H by adding H⁺.

 $C_2H_6O \rightarrow C_2H_4O + 2 H^+$

14 H⁺ + Cr₂O₇²⁻ → 2 Cr³⁺ + 7 H₂O

Step 6: Balance charges by adding e⁻.

 $C_2H_6O \rightarrow C_2H_4O + 2 H^+ + 2 e^-$

6 e⁻ + 14 H⁺ + Cr₂O₇²⁻ → 2 Cr³⁺ + 7 H₂O

Multiply the half-reactions in order to balance electrons and add them together.

$$3 \times [C_2H_6O \rightarrow C_2H_4O + 2 H^+ + 2 e^-]$$

6 e^- + 14 H^+ + Cr₂O₇²⁻ \rightarrow 2 Cr³⁺ + 7 H₂O

Step 8: Cancel common species.

 $6 \cdot e^{-}$ + 8 14 H⁺ + Cr₂O₇²⁻ + 3 C₂H₆O → 3 C₂H₄O + $6 \cdot H^{+}$ + $6 \cdot e^{-}$ + 2 Cr³⁺ + 7 H₂O

Make sure all elements and charges are balanced.

8 H⁺ + Cr₂O₇²⁻ + 3 C₂H₆O → 3 C₂H₄O + 2 Cr³⁺ + 7 H₂O

Reactants		Products	
Н	26	Н	26
Cr	2	Cr	2
0	10	0	10
С	6	С	6
Charge	+6	Charge	+6

Everything is balanced!

Correct answer:

 $8 H^{+} + Cr_2O_7^{2-} + 3 C_2H_6O \rightarrow 3 C_2H_4O + 2 Cr^{3+} + 7 H_2O$

$$CH_3CHO + MnO_4^- \rightarrow Mn^{2+} + CH_3COOH$$

Step 1:

The net ionic equation is already written, so we can go to rule 2.

Step 2: Break into half-reactions.

 $CH_3CHO \rightarrow CH_3COOH$

 $MnO_4^- \rightarrow Mn^{2+}$

Step 3:

All elements other than O or H are already balanced.

 $CH_3CHO \rightarrow CH_3COOH$

 $MnO_4^- \rightarrow Mn^{2+}$

Step 4: Balance O by adding H₂O.

 $H_2O + CH_3CHO \rightarrow CH_3COOH$

 $MnO_4^- \rightarrow Mn^{2+} + 4 H_2O$

Step 5: Balance H by adding H⁺. H₂O + CH₃CHO \rightarrow CH₃COOH + 2 H⁺

 $8 \text{ H}^+ + \text{MnO}_4^- \rightarrow \text{Mn}^{2+} + 4 \text{ H}_2\text{O}$

Step 6: Balance charges by adding e^{-} . H₂O + CH₃CHO \rightarrow CH₃COOH + 2 H⁺ + 2 e^{-}

5 e⁻ + 8 H⁺ + MnO₄⁻ \rightarrow Mn²⁺ + 4 H₂O

Multiply the half-reactions in order to balance electrons and add them together.

5 x [H₂O + CH₃CHO → CH₃COOH + 2 H⁺ + 2 e⁻] 2 x [5 e⁻ + 8 H⁺ + MnO₄⁻ → Mn²⁺ + 4 H₂O]

10 e^{-} + 16 H^{+} + 2 MnO_4^{-} + 5 H_2O + 5 $CH_3CHO \rightarrow$ 5 CH_3COOH + 10 H^{+} + 10 e^{-} + 2 Mn^{2+} + 8 H_2O

Step 8: Cancel common species.

 $\frac{10 \text{ e}}{10 \text{ e}} + 6 \frac{16}{16} \text{ H}^{+} + 2 \text{ MnO}_{4}^{-} + \frac{5 \text{ H}_{2}\text{O}}{10 \text{ e}} + 5 \text{ CH}_{3}\text{CHO} \rightarrow 5 \text{ CH}_{3}\text{COOH} + \frac{10 \text{ H}^{+}}{10 \text{ H}^{+}} + \frac{10 \text{ e}}{10 \text{ e}^{-}} + 2 \text{ Mn}^{2+} + 3 \frac{8}{10 \text{ H}_{2}}\text{ H}_{2}\text{O}$

Make sure all elements and charges are balanced.

6 H⁺ + 2 MnO₄⁻ + 5 CH₃CHO → 5 CH₃COOH + 2 Mn²⁺ + 3 H₂O

Reactants		Products	
Н	26	Н	26
Mn	2	Mn	2
0	13	0	13
С	10	С	10
Charge	+4	Charge	+4

Everything is balanced!

Correct answer:

6 H⁺ + 2 MnO₄⁻ + 5 CH₃CHO → 5 CH₃COOH + 2 Mn²⁺ + 3 H₂O

$$O^{2-} + F_2 \rightarrow O_2 + F^-$$

Step 1:

The net ionic equation is already written, so we can go to rule 2.

 $0^{2-} \rightarrow 0_2$

 $F_2 \xrightarrow{} F^{\scriptscriptstyle -}$

Step 3:

Balance all elements other than O or H.

 $O^{2-} \rightarrow O_2$

 $F_2 \rightarrow 2 F^-$

Step 4: Balance O by adding H₂O. H₂O + O²⁻ \rightarrow O₂ F₂ \rightarrow 2 F⁻

Step 5: Balance H by adding H⁺.

 $H_2O + O^{2-} \rightarrow O_2 + 2 H^+$

 $F_2 \rightarrow 2 F^-$

Step 6: Balance charges by adding e⁻.

 $H_2O + O^{2-} \rightarrow O_2 + 2 H^+ + 4 e^-$

 $2 e^- + F_2 \rightarrow 2 F^-$

Multiply the half-reactions in order to balance electrons and add them together.

$$H_2O + O^{2-} \rightarrow O_2 + 2 H^+ + 4 e^-$$

2 x [2 e⁻ + F₂ → 2 F⁻]

$$4 e^{-} + 2 F_2 + H_2O + O^{2-} \rightarrow O_2 + 2 H^+ + 4 e^{-} + 4 F^-$$

Step 8: Cancel common species.

 $4 \cdot e^{-} + 2 \cdot F_2 + H_2O + O^{2-} \rightarrow O_2 + 2 \cdot H^+ + 4 \cdot e^{-} + 4 \cdot F^-$

Make sure all elements and charges are balanced.

 $2 F_2 + H_2O + O^{2-} \rightarrow O_2 + 2 H^+ + 4 F^-$

Reactants		Products
F	4	F 4
Н	2	H 2
0	2	0 2
Charge	-2	Charge -2

Everything is balanced!

Correct answer:

 $2 F_2 + H_2O + O^2 \rightarrow O_2 + 2 H^+ + 4 F^-$

$$PbO_2 + I_2 \rightarrow Pb^{2+} + IO_3^{-1}$$

Step 1:

The net ionic equation is already written, so we can go to rule 2.

Step 2: Break into half-reactions.

 $PbO_2 \rightarrow Pb^{2+}$

 $I_2 \rightarrow IO_3^-$

Step 3:

Balance all elements other than O or H.

 $PbO_2 \rightarrow Pb^{2+}$

 $I_2 \rightarrow 2 IO_3^-$

Step 4: Balance O by adding H₂O. PbO₂ \rightarrow Pb²⁺ + 2 H₂O 6 H₂O + I₂ \rightarrow 2 IO₃⁻

Step 5: Balance H by adding H⁺. 4 H⁺ + PbO₂ \rightarrow Pb²⁺ + 2 H₂O 6 H₂O + I₂ \rightarrow 2 IO₃⁻ + 12 H⁺

Step 6: Balance charges by adding e⁻. $2 e^{-} + 4 H^{+} + PbO_2 \rightarrow Pb^{2+} + 2 H_2O$ $6 H_2O + I_2 \rightarrow 2 IO_3^{-} + 12 H^{+} + 10 e^{-}$

Multiply the half-reactions in order to balance electrons and add them together.

5 x [2 e⁻ + 4 H⁺ + PbO₂ \rightarrow Pb²⁺ + 2 H₂O] 6 H₂O + I₂ \rightarrow 2 IO₃⁻ + 12 H⁺ + 10 e⁻

 $6 H_2O + I_2 + 10 e^- + 20 H^+ + 5 PbO_2 \rightarrow 5 Pb^{2+} + 10 H_2O + 2 IO_3^- + 12 H^+ + 10 e^-$

Step 8: Cancel common species.

 $6 H_2O + I_2 + 10 e^- + 8 20 H^+ + 5 PbO_2 \rightarrow 5 Pb^{2+} + 4 10 H_2O + 2 IO_3^- + 12 H^+ + 10 e^-$

Make sure all elements and charges are balanced.

 I_2 + 8 H⁺ + 5 PbO₂ \rightarrow 5 Pb²⁺ + 4 H₂O + 2 IO₃⁻

Reactants		Products	
I	2	I	2
Н	8	Н	8
Pb	5	Pb	5
0	10	0	10
Charge	+8	Charge	+8

Everything is balanced!

Correct answer:

 $I_2 + 8 H^+ + 5 PbO_2 \rightarrow 5 Pb^{2+} + 4 H_2O + 2 IO_3^-$