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Abstract 
 

Bivariate correlation analysis is one of the most commonly used statistical methods.  
Unfortunately, it is generally the case that little or no attention is given to sample size 
determination when planning a study in which correlation analysis will be used.  For 
example, our review of clinical research journals indicated that none of the 111 articles 
published in 2014 that presented correlation results provided a justification for the sample 
size used in the correlation analysis.  In this presentation, we discuss the issues associated 
with sample size determination for bivariate correlation analysis and provide simplified 
tools, including nomograms, for determining the required sample size.  These tools make use 
of recent improvements in methods for sample size calculations for correlation analysis.  
Tools are provided that can be used for sample size determination for Pearson, Spearman, 
and Kendall coefficients. 
 
Keywords:  Effect size; Confidence interval; Pearson correlation; Spearman correlation; 
Kendall coefficient; Power 
 

1. Introduction 
 
 Bivariate correlation analysis is one of the most commonly used statistical methods. 
Unfortunately, little or no attention is given to sample size determination when planning a 
study in which correlation will be the primary analysis. Our review of clinical research 
journals indicated that none of the 111 articles published in 2014 that used correlation as the 
primary analysis provided a sample size justification or power calculation.  
 

2. Available Tools 
 
 There are many tools available for investigators who wish to perform a sample 
size or power calculation for correlation coefficient inference. There include tables (Cohen 
1988, Looney 1996, Looney and Hagan 2015), formulas (Bonett and Wright 2000, 
Looney and Hagan (2015), software code (Looney and Hagan 2015), software packages 
(Table 1), and internet-based Java applets (Table 2).  However, these resources vary 
widely in terms of capabilities and sometimes they cannot be relied upon to provide 
accurate results. For example, none of the widely used packages listed in Table 1 have 
the capability of performing sample size calculations for either a Spearman correlation 
coefficient (SCC) or a Kendall coefficient of concordance (KCC).  None of the applets in 
Table 2 are capable of performing a sample size calculation based on the width of the 
confidence interval.  One of the applets in Table 2 sometimes gives incorrect results, as 
illustrated in Section 6.1. 

 
3. Issues in Sample Size Determination for Correlation Coefficients 

 
 Given the wide availability of tools for performing sample size and power 
calculation for correlation coefficients, one must ask: "why are sample size and power  
calculations not done?"  There are several possible explanations, including (1) status quo, (2) 
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lack of availability of easy-to-use tools that provide correct results, and (3) correlation 
analysis is often considered to be an exploratory analysis, so sample size determination (or 
justification) may seem unnecessary.   
 However, these attitudes are hardly justifiable, especially among statistical 
professionals, as any practicing statistician is well aware of the importance of sample size 
determination in general. If the sample size is too small, it will be impossible for the 
statistical test of the correlation coefficient to detect a scientifically meaningful 
association, even if one is  present. Furthermore, negative (i.e., non-significant) statistical 
results can give the mistaken impression that the two variables are not associated with 
each other if the sample size is too small.  On the other hand, if the sample size is too 
large, valuable resources will be wasted since a scientifically meaningful association 
could have been detected with fewer subjects. In addition, associations that are not 
scientifically meaningful may be statistically significant if the sample size is too large.  
 

4. Our Contribution 
 
 In this presentation, we provide the following new developments: (1) improved 
sample size formulas for the Spearman coefficient, (2) sample size formulas for the 
Kendall coefficient, and (3) sample size nomograms for the Spearman coefficient. 
 

5. Example 
 
 We will illustrate many of our ideas using information from the study entitled 
"Development of Lithogenic Bile During Puberty in Pima Indians" (Bennion et al. 1979). 
The primary goal of this study was to examine the association between age and bile 
cholesterol saturation (BCS) in young Pima Indians.  Bennion et al. found a Pearson 
correlation of r = 0.40 in their sample of 36 males. Suppose that we want to plan a study 
to examine the association between age and BCS in young Cherokee Indians.   
 

6. Methods for Sample Size Determination for Correlation Coefficients 
 
6.1 Usual Approach for Pearson Correlation 
 The most commonly used method for calculating the required sample size for 
inference based on a Pearson correlation coefficient (PCC) is to use pilot data, previously 
published research, published guidelines or recommendations, clinical judgment or expertise 
of the research team, or other relevant information to identify a "planning value" for the 
correlation coefficient of interest.  For example, we could use the value of 0.40 obtained 
by Bennion et al. (1979) as our planning value.   
 Once an appropriate planning value has been identified, one simply uses Table 
3.4.1 in Cohen (1988, p. 102) to determine the required sample size.  This table is based 
on the "usual" test of the hypotheses  
    Ho: ρ = 0  vs. Ha: ρ  0,    (1) 
that uses the test statistic  

    0 2
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which follows a t distribution with n - 2 degrees of freedom when H0 in (1) is true.  Based 
on Cohen's table, n = 46 yields 80% power for detecting departures from zero as small as 
|ρ| = 0.40 when α = 0.05.  With one exception, applying any of the tools mentioned in 
Tables 1 and 2 yields either n = 46 or n = 47. AI-Therapy Statistics https://www.ai-
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therapy.com/psychology-statistics/sample-size-calculator yields a sample  size of n = 40, not 
n = 46. 
 While the "usual" approach described above is straightforward to apply, with 
easily accessible tools, there are problems with basing the sample size calculation for the 
PCC on the hypotheses in (1). For one thing, Ho: ρ = 0 is not the appropriate null 
hypothesis to test in most situations. It is usually of little interest to determine if ρ  0. 
(The lone exception would be that the primary null hypothesis is that X and Y are 
independent, and the assumption can be made that X and Y have a bivariate normal 
distribution.)  Other authors agree with our assertion: Strike (1996, p. 170) argues that the 
test of ρ = 0 is "utterly redundant" and Shoukri (2011, p. 92) asserts that a test of Ho: ρ = 
0 is "meaningless."  One may then reasonably ask why the most commonly used approach 
for sample size determination for a correlation coefficient is based on the test of Ho: ρ = 0.  
 Another problem with basing the sample size calculation on the "usual" test of 
(1) is that sample sizes required to yield 80% power for the test of Ho: ρ = 0 using a 
significance level of 0.05, for example, are generally too small to yield a 95% confidence 
interval (C.I.) of usable width, even when r is rather large. For example, using any of the 
tools in Table 1 or 2, we find that n = 6 is sufficient to achieve 80% power against the 
alternative value ρ1 = 0.90 when testing the hypotheses in (1).  Now, for the sake of 
argument, suppose the value of the PCC in the sample of n = 6 turns out to be exactly r = 
0.9.  We obtain a statistically significant result, as expected, with a 2-tailed p-value of 
0.015.  However, the 95% C.I. based on these data is (0.33, 0.99).  Thus, we have 
statistical significance, but a C.I. that is too wide to provide any useful information about 
the true magnitude of ρ. 
 A third problem with basing the sample size calculation for the PCC on the test 
of (1) is that the test statistic in (2) often rejects Ho for small values of r, even when n 
is relatively small. For example, suppose a sample of n = 30 yields r  = 0.361. Then the 2-
tailed p-value = 0.0495, with a 95% C.I. of (0.001, 0.638). Again, we have statistical 
significance, but a C.I. that is too wide to provide any useful information about the true 
magnitude of ρ. 
 
6.2 Alternative Approach 1 
 
 An alternative approach for determining the sample size required for inference 
based on the PCC is to choose n based on the desired width of the resulting C.I., not the 
power of the test of  Ho: ρ = 0.  In general, a confidence interval for the true value of a 
Pearson coefficient can be derived using Fisher's z-transform of the sample coefficient r:  

    1 1 1
tanh ln ,

2 1
      

r
z r

r
   (3) 

which is asymptotically distributed as  1 2tanh ,  N , where ρ denotes the true value 

of the PCC and 2 denotes the asymptotic variance of z. The same transformation can be 
applied to the sample value of a Spearman or Kendall coefficient, yielding an 
approximately normally distributed transformed coefficient. For the PCC, 2 1 / ( 3)  n  

(Fisher 1925); for the SCC, 2 2(1 / 2) / ( 3)    s n , where s denotes the true value of 
the Spearman coefficient (Bonett and Wright 2000); and, for the KCC, 

2 0.437 / ( 4)  n  (Fieller et al. 1957). 
 Basing sample size determination on obtaining a confidence interval of desirable 
width is easily justified, given that the use of C.I.'s in correlation analysis (or any other 
type of statistical inference) should by now be standard practice, given that leading 
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statistical practitioners have emphasized the use of C.I.'s as an alternative to p-values for 
the last 30 years (e.g., Gardner and Altman 1986). 
 Bonett and Wright (2000) proposed a two-stage process for determining n based 
on the desired width of the C.I. for the true value of the coefficient.  This method can be 
applied to Pearson, Spearman, or Kendall coefficients.  The true value of the coefficient 
to be estimated will be denoted by ξ in what follows. 

  Stage 1:  Compute   22 2

0 /24 1 / ,  n c z w b  

  Stage 2:  Compute  2

0 0( ) /n n b w w b    if the desired 

confidence interval width has not been attained using n0.  In these formulas, 

    = a planning value for the coefficient, 
  w = desired width of the C.I. for the true value ξ, 
  zα/2

  =  z-score corresponding to a two-sided 100(1-α)% C.I., 
  b  and c2 are taken from Table 3, 
  no is the sample size estimate from Stage 1, 

  wo is the width of the Stage 1 interval based on n0. 
 
A nomogram for finding the required sample size for estimating a Spearman coefficient 
using a 95% C.I. that is based on this two-stage procedure is provided in Figure 1. To use 
this nomogram, first locate the planning value along the x-axis. (In the example, this is 
0.4.) Then, draw a vertical line that intersects with the curve corresponding to the desired 
width of the confidence interval in the study being planned. (In the example, this is 0.2.) 
Finally, draw a horizontal line from the curve to the y-axis. The point of intersection is 
the desired sample size. This method is illustrated in Figure 1 for the example described 
below. 
 Returning to the Example, suppose that we decide to use the SCC as the measure 
of association in the study we are planning because of the apparent non-normality of the 
BCS data in the study by Bennion et al.  Let rs denote the sample SCC and let ρs denote 
the true value. Using the nomogram in Figure 1, we find that a sample size of  n = 300 
would yield a 95% C.I. for ρs of width 0.20 based on a planning value of 0.4.  Suppose 
for the sake of argument that the resulting sample of size 300 yields exactly rs = 0.4.  
Then we obtain a 2-tailed p-value < 0.0001 and a 95% C.I. of (0.29, 0.50).  The results 
certainly indicate statistically significance, but the C.I. is narrow enough to indicate that 
ρs is "weak" according to the cutoffs proposed by Morton, Hebel, and McCarter (1996), 
who recommended that a correlation between 0.2 and 0.5 be classified as weak. 
 
6.3 Alternative Approach 2 

 
 Another alternative to basing the sample size calculation on the test of (1) is to 
specify another null value in the null hypothesis.  We can use the test statistic based on 
the Fisher z-transform in (3) to test   
     Ho: ξ = ξ0,    (4) 
where ξ0 is the null value of interest of the desired measure of association (Pearson, 
Spearman, or Kendall).  For a 1-tailed test of the null hypothesis in (4), Fisher's z yields the 
following sample size formula:   

    

2

2

1 0

( )
,

( ) ( )

z z
n b c

z z
 

 
 

    
   (5) 

where  zγ =upper γ-percentage point of N(0,1), 
 z(ξ) denotes the Fisher z-transform of ξ, and  
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 b and c2 are taken from Table 3. 
For a 2-tailed test of (4), simply replace zα in (5) by zα/2 . 
 A nomogram for finding the required sample size for a lower-tail test of a 
Spearman coefficient using significance level 0.05 that will yield 80% power is provided 
in Figure 2.  To use this nomogram, first locate the null value of the SCC along the x-
axis. (In the example, this is 0.7). Then, draw a vertical line that intersects with the curve 
corresponding to the alternative value in the lower-tailed hypothesis test to be used in the 
study being planned. (In the example, this is 0.5.) Finally, draw a horizontal line from the 
curve to the y-axis. The point of intersection is the desired sample size. This method is 
illustrated in Figure 2 for the example described below. 
 Sometimes the primary purpose of a new study is to determine if the correlation 
is significantly different from some scientifically or clinically meaningful value.  Suppose 
that we wish to use multiple regression based on ranks (Iman and Conover 1979) to 
model BCS as a function of various characteristics of  the Cherokee Indians we are 
planning to study (e.g., age, gender, diabetic status).  As part of our variable screening, 
we wish to examine the percent variability in the ranked bile cholesterol saturation levels 
that is explained by ranked age, and we assume that the scientifically meaningful cutoff is 

2 0.50sR  , corresponding to ρs = 0.7. We will test Ho: ρs ≥ 0.7 using the sample data from 
the study we are planning. If the data indicate that Ho should be rejected (and hence we 
conclude that ρs < 0.7), then we will eliminate age from further consideration in our rank-
based multiple regression model for BCS. Using the nomogram in Figure 2, we see that 
we could detect  alternative values of ρs as large as 0.5 ( 2 0.25sR  ) in our 1-tailed test 
with a sample of n = 70. 
 

6. Discussion 
 
 As we pointed out in Section 3, Ho: ρ = 0 is usually not  the appropriate null 
hypothesis to test, and using n obtained from sample size tables tailored to the usual t-test 
of this hypothesis can yield samples that provide very little useful information about the 
magnitude of ρ. As alternatives to basing the sample size determination on the test of Ho: 
ρ = 0, we propose that one consider either (1) testing a null value other than ρ0 = 0 and 
choosing a value of n  to achieve acceptable power for this test, or (2) choosing n so as to 
achieve a desired level of precision of the estimate of the correlation coefficient, as 
measured by the width of a confidence interval.  However, we acknowledge that using 
either of these alternative methods can yield sample sizes that are much larger than those 
required to achieve good power for the usual test of Ho: ρ = 0. Depending on the 
accessible population and the available resources for collecting the data from these larger 
samples, these sample sizes may not be feasible in the context of the applied research 
problem. In this case, the investigators should consider re-formulating their research 
question(s), or proposing another statistical analysis that will require fewer subjects. The 
results of a correlation analysis should be interpreted in light of the p-value calculated for 
the appropriate hypothesis test of the true value of the correlation parameter, as well as 
the confidence interval for the true value.  If the confidence interval resulting from the 
sample size used in the study is too wide to be of practical use, then one may legitimately 
question the validity and generalizability of the study results. 
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Table 1. Summary of Software Capabilities for Sample Size and Power Calculations 
for Correlation Coefficients 
 
 
Method 

 
PASS 

 
nQuery 

 
SAS Proc 
POWER 

 

 
R package 

pwr 

 
Test of  Ho: ρ = 0 

 
√ 

 
√ 

 
√ 

 
√ 

 
Test of  Ho: ρ = ρ1 

 
√ 

 
√ 

 
√ 

 
--- 

 
C.I. Width 

 
√ 

 
√ 

 
--- 

 
--- 

 
Spearman 

 
--- 

 
--- 

 
--- 

 
--- 

 
Kendall 

 
--- 

 
--- 

 
--- 

 
--- 

 
 
Table 2. Summary of Applet Capabilities for Sample Size and Power Calculations 
for Correlation Coefficients 
 

 
Method 

 
UCSF1 

 
Stat 

Decision 
Tree2 

 

 
SISA3 

 
 

 
AI-Therapy 
Statistics4 

 

 
Test of  Ho: ρ = 0 

 
√ 

 
√ 

 
√ 

 
√ 

 
Test of  Ho: ρ = ρ1 

 
--- 

 
--- 

 
√ 

 
--- 

 
C.I. Width 

 
--- 

 
--- 

 
--- 

 
--- 

 
Spearman 

 
--- 

 
--- 

 
--- 

 
--- 

 
Kendall 

 
--- 

 
--- 

 
--- 

 
--- 

 
1http://www.sample-size.net/correlation-sample-size/ 
2https://www.anzmtg.org/stats/PowerCalculator/PowerCorrelation 
3http://www.quantitativeskills.com/sisa/statistics/correl.htm 
4https://www.ai-therapy.com/psychology-statistics/sample-size-calculator 
 
(All were accessed on July 19, 2016.) 
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Table 3. Constants Needed to Apply Fisher z-Transform to Measures of Association 
 

 
Measure of 
Association 
 

 
b 

 
c2 

 
Source 

 
Pearson 

 
3 

 
1 

 
Fisher (1925) 

 
 
Spearman 

 
3 

 
 2

1 / 2  s  

 
Bonett and Wright (2000) 

 
 
Kendall 

 
4 

 
0.437 

 

 
Fieller et al. (1957) 

 

Note: For purposes of sample size determination based on a confidence interval, s  is a 
"planning value."  For purposes of sample size determination based on an hypothesis test, 
s  is the null value. 
 
 
 

 
 
Figure 1. Sample Size Nomogram for 95% Confidence Interval Estimation of 
Spearman's Coefficient
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Figure 2. Sample Size Nomogram for Lower-tailed Test of Spearman's Coefficient, 
80% Power, Significance Level 0.05 
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