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Abstract—Chemical vapor analysis devices are booming,
thanks to a growing need in areas such as security and quality
control. These control devices are based on various technologies
that are the subject of important researches in an ever-growing
community of physicists and electronics. However, the data from
these sensors are often processed by conventional algorithms
poorly configured for the purpose of automatically recognizing
target chemical compounds. These algorithms are often based on
statistical models that are not always adapted to a limited number
of learning data and demonstrated reproducibility problems
for these kind of sensors. In this article, we propose to train
fuzzy models and compare their performances with the classical
methods of the state of the art, to show how practical they
can be for such applications. Three different uses cases will
be studied: toxic chemicals recognition, detection of counterfeit
coffee capsules and detection of a chemical weapon among
everyday products.

Index Terms—Fuzzy rule-based system, volatile chemical
compounds, surface acoustic wave sensors, FURIA, fuzzy decision
trees.

I. INTRODUCTION

For decades, the recognition of volatile chemical

compounds was done using classic olfactometry approaches:

for instance, using a panel of experts or exploiting the

developed olfactory capabilities of certain animals. However,

physiological differences and concentration problems led

to imprecise, even non-reproducible identifications. For

example, it is estimated that a trained dog can only stay

focused between 15 and 30 minutes. To overcome these

shortcomings, alternative methods have been developed: gas

chromatography, mass spectrometry, optical spectrometry and

chemical sensors [1].

The problem of classification of “odours” has been

successfully treated, in particular with fuzzy logic [2]–[7].

To carry out this task, different descriptors are used for

classification, such as the physico-chemical quantities of the

molecules [3], [5], the characteristics resulting from the

responses of sensory sensors [4], [7], or even sensory analyses

carried out by experts [2]. Although they all rely on the

formalism of fuzzy logic, the classification methods used are

also very varied, ranging from neural networks like Fuzzy

ARTMAP [4], to methods of fuzzy rules induction [2], [5]

and modeling by experts [3], [7].

This article focuses on chemical sensors, which are booming

thanks, among other things, to their transportability and their

low cost. Their general principle is based on the physico-

chemical interaction between a volatile compound and a layer

of sensitive material. In particular, this work deals with SAW

(Surface Acoustic Wave) sensors that will be introduced in

section II.

In [8], the recognition of chemical compounds has been

studied with classical approaches of machine learning (neural

networks, SVP, kNN, etc.). However, the reactions of SAW

sensors are not exactly reproducible, which leads to the need

of a large number of training examples.

This article addresses the same problem but this time using

fuzzy rule-based classifiers. They have the advantage to return

a rule-based model that can be evaluated by experts of the

domain afterwards. Furthermore, one can have access to the

details of rules activated during a process of classification,

making the decision more transparent.

As experts cannot formulate a rule base, we use machine

learning. We will therefore compare two approaches: FURIA

and fuzzy decision trees. These two algorithms represent two

different strategies to induce rules from data.

The article is composed as follows. Section II explains the

principles of SAW sensors and the feature extraction. Section

III reminds the principles of the two methods of rule induction,

which are used in this work. We then describe the experimental

protocol in section IV and we present the results (section V)

and discuss them (section VI) before concluding.

II. SAW SENSORS FEATURE EXTRACTION

The particularity of this work is to be applied on a

more recent generation of chemical sensors based on Surface

Acoustic Wave (SAW). Figure 1 presents an illustration of

such sensors.
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Fig. 1: Principles of SAW sensors

When molecules interact with the sensitive surface of a

SAW sensor, the physical properties of the latter change. These

changes are converted into a signal. In our case, modified

diamond nanoparticles are used as sensitive coatings that can

be mixed with other nanoparticles to improve their sensitivity

to chemical compounds. It is thus common to use a matrix of

such sensors with different coatings, and so to manipulate a

multi-valued signal.

This differs from most of the previous works cited in the

introduction since we do not have a characterization of the

molecules but only signals from which we will extract features.

Figure 2 represents the response of the sensor when exposed

to a coffee capsule. Each curve is in fact the output of a

SAW sensor whose functionalization (the reactive layer) is

specified in legend. This figure shows that the multi-valued

signal is composed of two parts: a phase called transient

regime and a phase called stationary regime. In practice,

there is undoubtedly information in the transient mode but

the sampling rate of these sensors being rather low (of the

Fig. 2: Example of output of the sensor for a coffee capsule

exposure.

order of 10Hz), it often happens that this phase is not seen.

The descriptors thus use the stationary phase.

The most used features in the literature [8], [9] are the

amplitudes of the different signals during this stationary phase.

However, Hotel et al [10] proposed new interpretable

descriptors based on the mathematical equations, which model

the vibrations of the reactive layer. Indeed, it was established

that the frequency shift of SAW sensors is the superposition

of two main contributions (the electro-acoustic one can be

neglected) [11]:

1) a viscoelastic contribution due to changes in the

coating’s Young modulus; and

2) a mass loading effect due to changes of the coating film’s

mass.

[11] modeled these equations by first order linear

differential equations. Since these contributions constitute a

signature of the odour, [10] suggests solving the equations

with the information contained in the signals. The features

are their solutions. Unfortunately, the lack of available

information prevent from solving them analytically. [10] uses

metaheuristics to approximate the solutions.

These features show a real improvement of the

performances in most applications [10]. However, the

features represent uncertain data. This motivates the use of

fuzzy logic, in particular the two methods we present in the

next section.

III. FUZZY RULE-BASED MODEL INDUCTION

A. Learning Fuzzy Rules with FURIA

FURIA [12], standing for Fuzzy Unordered Rule Induction

Algorithm, is an extension of the RIPPER [13] non-

fuzzy rule learning algorithm. Briefly, RIPPER is a multi-

label classification algorithm that learns rules having as a

premise a conjunction of inequalities on numeric attributes
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Fig. 3: Example of trapezoidal membership functions used in

FURIA

and consequently, a class among the set of classification

labels. With FURIA, Hühn and Hüllermeier introduce two

major modifications: the learning of unordered rules and the

fuzzification of learned inequalities.

The first consists in applying a one-vs-rest decomposition

of the data to obtain an unordered rule base, instead of

eliminating the classes one after the other and get a decision

list like previous rule base learning algorithms. The latter

approach can cause a bias in favor of the default class, which

is corrected in FURIA by treating each class equivalently.

Then, as in RIPPER, the rules for each class are learned by

starting with an empty rule and adding the predicates, which

maximize the gain of information from FOIL [12] until the

rule only covers target data. The rule set stops growing when

all the target instances are covered or if the total description

length of the rule base is 64 bits higher than the smallest

previously calculated.

After growth, the previous set of rules is optimized to

avoid over-fitting. Each rule Ri is compared to two newly

constructed rules: a replacement rule R′

i, empty before growth,

and a revision rule R′′

i , equal to Ri before growth. They are

both temporarily placed in the ith position of the rule set,

developed as above according to FOIL’s information gain, and

pruned to minimize the error of the total rule base.

Between Ri, R
′

i and R′′

i , the rule that generates the smallest

minimum description length (MDL) is kept. The remaining

target examples are covered as in the growth phase and this

optimization can be repeated several times (2 times in general).

The second major modification occurs at the end of the

algorithm: the inequalities initially learned are transformed

into fuzzy sets with a trapezoidal membership function, as

illustrated on Figure 3. For a rule, we determine the best

fuzzification of each predicate: the original interval defined

at the core of the trapezoid and the data not covered by

the predicate are evaluated as the support boundary of the

trapezoid, via a purity measurement [12]. The purest of the

fuzzy intervals thus constructed is kept and this procedure is

repeated until all the inequalities are fuzzified.

Finally, we obtain a set of unordered fuzzy rules. This

type of model involves two possible classification problems:

examples covered identically by two rules with different
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Fig. 4: Strong partition of the domain of an input variable,

automatically obtained with a clustering approach

conclusions and examples not covered by a rule. For the first,

FURIA weighs the rules according to their certainty factor on

the learning set; the second is treated by rule stretching, i.e. by

evaluating by Laplace precision the minimum generalization of

the rules.

In summary, the FURIA algorithm follows four main steps:

1) One-vs-rest learning of crisp rules by maximizing the

gain of FOIL information on predicates.

2) Optimization of each rule by growing 2 alternative rules

and choice of the rule generating the smallest MDL.

3) Fuzzification of crisp expressions into fuzzy sets with

trapezoidal membership functions by maximizing their

purity criterion.

4) Classification: weighting of rules and rule-stretching if

examples are not covered.

B. Inducing Fuzzy Decision Trees

Fuzzy decision trees (FDT) are a generalization of decision

trees [14]. They appear in the early 90s with fuzzified versions

of ID3 [15], [16]. To the authors of [17], fuzzy decision trees

are classifiers closer to human thinking and that are more

robust to imprecision, conflict and missing information.

The most used FDTs are derived from the ID3

algorithm [18]–[20]. They consist in determining strong fuzzy

partitioning of the input variables before the learning algorithm

in tree structure. The fuzzy sets obtained via clustering

(Figure 4) are then used as categorical variables in the original

ID3 algorithm, each node dividing a variable into its different

fuzzy sets. An instance x is distributed among the children

of the node according to its membership degree µ
A

j

i

(x) to

each fuzzy subset A
j
i of the variable i split by the node. The

measure of discrimination, i.e. the entropy for ID3, has been

adapted to consider the different membership degrees for each

branch.

Another category of fuzzy decision trees groups the

algorithms that fuzzify the thresholds used in the nodes of

trees handling numerical data [21], [22]. Instead of performing

a crisp binary division of a variable, the boundary is fuzzified

to obtain a fuzzy transition between the left and right children.

In fuzzy SLIQ [22], the width of the linear part of the splitting

function depends on the standard deviation of the variable,



which is split. In [21], the authors perform a Fibonacci search

to optimize the width of the slope after that the optimal

threshold has been found.

More recently, Intuitionistic Decision Trees [23], based

on Fuzzy ID3, are showing good performances on several

datasets.

In this work, we focus on the fuzzy variants of ID3 and

C4.5 decision trees, with the following workflow:

1) Clustering for each input variables in order to get

modalities.

2) Strong fuzzy partitioning with triangular membership

functions whose tops are the centroids of the clusters.

3) FDT growth: the variable minimizing the fuzzy entropy

is selected at each step.

4) Classification: for each leaf, the majority class is

selected.

IV. EXPERIMENTAL PROTOCOL

The number of sensors can be different from one experiment

to another. Each sensor is coated with a diamond nanolayer

and has a fundamental frequency of 433.9 MHz [24]–[26]. The

signals are recorded and the characteristics on these signals are

extracted to constitute the learning and validation sets.

The learning algorithms will be evaluated on three databases

consisting of the experiments presented below, and on two

types of descriptors presented in the following subsection.

The first data set consists of acquisitions of 5 different toxic

gases, the second of experiments on authentic and counterfeit

coffee capsules, and the third one of acquisitions of DMMP,

simulating Sarin gas, everyday products (e.g., soap) and

mixtures of compounds.

A. Use Cases

We select three real-world use cases. They are relevant since

the experimental environment is less and less controlled: for

instance, the toxic chemicals experiment has been conducted

in a lab, while the DMMP experiment has been conducted

with a backpack and the ambient air. We will now describe

the data sets for the three use cases.

1) Toxic chemicals recognition: The device used is based

on a network of eight SAW sensors. The sensors were

exposed to ammonia (NH3), sulfur dioxide (SO2), hydrogen

sulfide (H2S), methanol (CH3OH) and toluene (C7H8) at

a concentration of 10 ppm, 8 ppm, 6 ppm, 4 ppm and 2

ppm. The gases were generated from the dilution of a nitrogen

calibrated gas. The temperature of the sensors (22o) and the

flow rate (200 ml / min) above them were kept constant. The

sensors were exposed to gas for 15 seconds, then the gas

cell containing the sensors was purged for 30 seconds. 17

exposure-purge cycles were performed for each gas at each

concentration.

2) Detection of counterfeit coffee capsules: This time,

the selected device is based on a network of four SAW

sensors. The sensors were exposed to 21 types of authentic

commercially available coffee capsules and 7 types of

counterfeit capsules. The contents of the capsules were

emptied into a sealed beaker; the volatile compounds of each

sample were transported through the gas cell containing the

sensors using a pump. The temperature of the sensors was

kept constant (22 o C). An exposure of 20 cycles (30 seconds)

- concentration (30 seconds) was performed for each sample.

The measurement process was repeated for 2 different capsules

of the same coffee.

3) Detection of DMMP among interferers: The selected

device is based on a network of eight SAW sensors. The

sensors were exposed to DMMP and interferents: water,

ethanol, shower gel and fertilizers, and DMMP-interfering and

interfering-interfering mixtures. After diffusion of the gases in

a backpack for 10 min, the vapors are inhaled in through the

sensors via a pump. The temperature of the sensors was kept

constant (22 o C). Several acquisitions were made, over several

days in order to obtain a sufficiently large database.

V. RESULTS

We compare here the performances in terms of

classification, obtained by applying statistical learning

methods and fuzzy classifiers presented in section III on the

three databases and the two types of features: tables I, II and

III.

For each data set and each feature set, the performances of

the best statistical method are presented [8] (called “baseline”

in the tables). As a reminder, they were obtained by a grid

search of the best hyperparameters of the SVM, LMNN,

BaggedTree and XGBoost methods. In the case of toxic

chemicals recognition, the correct classification rate was

used as a performance measure, while for the detection of

counterfeit coffee capsules and the detection of DMMP among

interferers, sensitivity has been calculated.

Similarly, the search for optimal parameters for FURIA and

fuzzy decision trees is done via a grid search on the number

of rule base optimization for the first (from 0 to 4 iterations),

and a grid search on the number of terms learned per input

variables for the second (from 3 to 7 terms).

The evaluation is carried out with a 5-fold cross-validation

process. The database is divided into 5 subsets of similar

size. The first serves as a test base first and the other four

as a learning base, and so on, from the second to the fifth.

Each table collects the mean and the standard deviation of

the evaluation metric. In the case of fuzzy classifiers, the

number of average rules is also indicated in order to judge

the complexity of the models learned. The duration of the

model induction is also shown.

Overall, the cross-validation performance of fuzzy

classifiers on the three datasets gives at least results close to

those obtained with statistical models, or even better in some

cases. Numerically, there is often less than 1 % difference

between the two types of methods. This is particularly

the case for the sensitivities obtained on the DMMP basis

(table III).

On the coffee and DMMP bases, we also find an

improvement in the results, tables II and III, when we consider

the mass and viscoelastic contributions compared to the results



TABLE I: Accuracy on toxic chemicals

Eight amplitudes

Score Rules Duration

Baseline 98.1± 0.7% − < 1s

FURIA 96.4± 1.7% 21 1.2s

FDT 98.8± 0.9% 203.6 9.7s

Sixteen contributions

Score Rules Duration

Baseline 98.5± 0.8% − < 1s

FURIA 95.0± 1.8% 23.4 1.0s

FDT 98.0± 0.9% 219 15s

TABLE II: Sensitivity on coffee data set

Four amplitudes

Score Rules Duration

Baseline 62.6± 8.7% − < 1s

FURIA 52.6± 1.9% 32.4 2.9s

FDT 61.2± 4.0% 197.2 35s

Eight contributions

Score Rules Duration

Baseline 69.8± 7.9% − < 1s

FURIA 69.5± 4.3% 18.8 5.6s

FDT 74.2± 3.3% 938.6 110s

TABLE III: Sensitivity on DMMP data set

Eight amplitudes

Score Rules Duration

Baseline 96.6± 2.6% − < 1s

FURIA 96.8± 4.4% 8 0.2s

FDT 96.7± 5.0% 57.6 4.6s

Sixteen contributions

Score Rules Duration

Baseline 98.3± 1.1% − < 1s

FURIA 97.7± 3.1% 7.6 0.2s

FDT 97.7± 3.2% 58.2 2.0s

obtained with the amplitudes as descriptors. The gain is most

significant on the basis of coffee capsules: +13 % for the FDT

algorithm and +16.9 % for FURIA.

VI. DISCUSSION

A. FURIA

The FURIA algorithm gives scores close to statistical

learning methods for DMMP, table III, but lower in the case

of toxic chemicals, table I. For the recognition of counterfeit

coffees, table II, the score is 10% lower with the amplitudes

as descriptors but goes back to the level of the statistical

methods with the contributions. Apart from the number of

rule base optimizations, the scores were obtained with standard

values for hyperparameters: the minimum number of instances

covered by a premise is fixed to 2 and the number of folds for

optimization to 3. If these hyperparameters are varied, there

is no significant change in the performances.

In addition to classification performance, we note that the

rule bases learned by FURIA are small, from 7 to 32 rules in

average. Regarding the number of training examples for each

base (600, 1600 and 160 respectively), there is at least one

rule for 20 examples in average. Thus, there is no over-fitting

with this method and the models obtained are compact.

From the confusion matrices given in table IV, we verify

that there is no bias in favor of the most frequent class

CH3OH like it could appear with RIPPER algorithm.

TABLE IV: Confusion matrices on toxic chemicals

Eight amplitudes

Predicted

C
H

3
O
H

N
H

3

S
O

2

C
7
H

8

H
2

A
ct

u
al

CH3OH 170 0 0 0 0

NH3 0 133 1 4 0

SO2 0 0 158 0 0

C7H8 0 1 8 141 0

H2 0 0 0 0 140

(a) Confusion matrix for baseline

Predicted

C
H

3
O
H

N
H

3

S
O

2

C
7
H

8

H
2

A
ct

u
al

CH3OH 168 0 0 2 0

NH3 0 129 3 5 1

SO2 0 0 155 1 2

C7H8 1 7 1 140 1

H2 0 2 1 0 137

(b) Confusion matrix for FURIA

Predicted

C
H

3
O
H

N
H

3

S
O

2

C
7
H

8

H
2

A
ct

u
al

CH3OH 170 0 0 0 0

NH3 0 134 0 4 0

SO2 0 0 158 0 0

C7H8 1 3 0 146 0

H2 0 0 1 0 139

(c) Confusion matrix for FDT

B. Fuzzy Decision Trees

The fuzzy decision trees give in the three cases quasi-

equivalent scores to the statistical methods: the difference is at

most 1.4 %, except with the contributions on the coffee data

set where there is a gain of 4.4 %, table II.

These performances were obtained by testing a few

combinations on the hyperparameters of the induction

algorithm, namely, the minimum degree of membership of an

example in a branch, the termination criteria on the gain of

entropy, the sum of the degrees of belonging to a node, and

the minimum number of examples in a node. Compared to

FURIA, performance varies more strongly by changing the

hyperparameters of the induction algorithm.



The strong partitioning of the input variables facilitates the

interpretability of the model. With, for example, a partition

with three fuzzy sets, we can assign the terms Low, Medium

and High to the learned sets, making the rule base accessible

to the final users. There is however a greater number of rules

learned than for FURIA. We note that for the coffee data set,

938 rules for 1600 examples are induced in average, i.e. less

than two examples per rule. The model suffers from over-

fitting and the accuracy (or sensitivity) as the only performance

criterion is not sufficient. It is then a question of finding

a compromise between performance at evaluation, number

of rules and computation time. We can also use rule base

simplification algorithms to return reduced size models.

VII. CONCLUSION AND PERSPECTIVES

In this article, we have successfully applied fuzzy rule-based

systems to the recognition of chemical compounds by an array

of SAW sensors. In order to get the rule bases, we chose to

use two popular methods: FURIA and fuzzy decision trees.

We collected data in three different use cases: the detection

of toxic compounds, the recognition of counterfeit coffee

capsules and the detection of the presence of DMMP in a

backpack. We also retained two types of descriptors in the

bibliography, based on one hand on the amplitudes, and on the

other hand on the mass and the visco-elastic contributions.

With a few exceptions, fuzzy classifiers lag behind or even

exceed statistical classifiers, with an accuracy of almost 99%

on toxic chemicals. In addition, we can note that the standard

deviations remain relatively low with the fuzzy methods, less

than 5%, which shows a good robustness of the models in

these applications. From all of these results, we conclude in

the interest to add these fuzzy classifiers in our scope of search

for the model learning process.

The use case of coffee capsules is delicate and the results

are no doubt due to the limitations of the sensors used: in fact,

coffee is made up of around a thousand different molecules

and the functionalization of the sensors were the same for all

three use cases.

We intend to continue this work by making better use of the

quality of the descriptors based on the contributions. Indeed,

coming from an approximation based on a meta-heuristic

optimization method, it is possible to fall into local extrema

and have degraded solutions. We will study the quality of these

features and use it during learning and recognition.
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