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ABSTRACT

Load-displacement relationships for nonlinear structures can be of
a variety of types. Of the available solution strategies, none is
reliable for all types of behavior, and most are reliable only for limited
classes of problems. An investigation of solution strategies has been
undertaken, with the aim of developing a scheme which is reliable and
substantially automatic for a wide variety of statically loaded nonlinear
structures.

A number of concepts and computational tools that are commonly used
in nonlinear structural analysis are first identified, and a consistent
terminology is suggested. The concepts of scalar force, scalar displace-
ment and scalar stiffness are defined, and the use of rank-one stiffness
and flexibility modifications is described. Next, a framework for non-
linear static solution strategies is developed, based on Newton-Raphson
iteration. This framework consists of four computational tasks, namely
linearization, displacement prediction, state determination, and conver-
gence checking. These tasks are performed in two phases, namely an
advancing phase and a correcting phase. Currently available solution
strategies are shown to differ in the way particular tasks are performed.
The strategies considered include modified Newton methods, (Quasi-Newton
methods, displacement—-controlled iteration, techniques for variable lead
step selection, and event-to-event strategies. Finally, a general solu-
tion strategy is described that includes most existing schemes, plus
certain new schemes as options., This strategy permits analysis by either
load-controlled or displacement-controlled methods, with flexibility in

the chodice for the controlling parameters,

ivb



The general solution strategy has been incorporated into the ANSR-III
computer program and tested on a series of four example problems. Three
of the examples involve buckling of truss structures, and the fourth
involves crushing of a pipe between two plattens, The examples are dis-
cussed. It is concluded that the solution strategy is reliable and

efficient for a wide variety of strongly nonlinear problems.
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1, INTRODUCTION

1.1 PROBLEM AREAS IN NONLINEAR STRUCTURAL ANALYSIS

Structural engineers are increasingly faced with the need to perform nonlinear analyses to

predict the true behavior of structures. Many different types of nonlinear behavior are possible,

including both material and geometric nonlinearities, and numerous solution strategies have

been proposed. However, no single strategy has proven to be usable, reliable, and economical

for a wide variety of problem types. Some particular areas of weakness are as follows.

03

2)

%)

4)

Because different authors use different terminology, the literature tends to be confusing.

There is a need for consistent terminology.

Strategies are often presented as special purpose solution schemes, and it is not always
obvicus how they relate to other schemes. There is a need for a general framework from

which to view the available strategies.

Certain computational tools appear often in different schemes, although their use may not

be readily apparent. There is a need to identify these tools more clearly.

In general, sophisticated solution schemes require substantial skill on the part of the
analyst for successful application. There is a need to simplify and automate the strategies

to reduce the chance for analyst error.

1.2 OBJECTIVES OF PRESENT RESEARCH

m

(2)

(3)

The objectives of the present research are as follows.

Clearly idemtify the tasks and tools commonly found in nonlinear static analysis and

describe them using a consistent terminology.

Construct a general framework for nonlinear static analysis, and show how the various

available solution strategies fit into this framework.

Devise a general solution strategy, incorporaling both exisiing and new concepts, that will

solve a variety of problems and be reliable and easy to use.



(4) Implement the strategy in the ANSR-III computer program, and test it on some strongly

nonlinear examples.

1.3 REPORT LAYOUT

The objectives outlined in Section 1.2 have essentizally been achieved, although there is
still substantial room for improvement. Chapter 2 begins with definitions of terms and con-
cepts used throughout the report. Newton-Raphson iteration is reviewed and a framework for
nonlinear static analysis is established. Existing strategies are discussed in terms of this general
framework. In Chapter 3 a general solution strategy is presented and discussed. Example prob-
lems are presented in Chapter 4, followed by conclusions in Chapter 5. Appendix A contains a

user’s guide, with notes, for the ANSR-III implementation of the solution strategy.



2. REVIEW AND DEFINITIONS

2.1 GENERAL

The literature dealing with nonlinear structural analysis can be difficult to interpret
because no consistent terminology exists. In the following sections a suggested consistent ter-
minology is presented, defining the terms and concepts most commonly used in static nonlinear

analysis.

2.2 DEFINITIONS

2.2.1 Displacements

For analysis by the Displacement Method, the primary unknowns of the problem are a
number of kinematic degrees of freedom (d.o.f.). These degrees of freedom are typically trans-
lational and rotational displacements at nodes of the siructure, and will be referred to as the
structure displacements, or simply, the displacements. The complete set of displacements can be
arranged in a displacement vector, r. Each element has associated with it a subset of the struc-
ture displacements, typically the displacements at the nodes to which the element connects.

These are the element displacements, which may be arranged in an element displacement vector, g.

The current displacements are the most recently calculated displacements. A displacement
increment is a finite (Ar) or infinitesimal (dr) change in the displacements. A displacement
vector can be regarded as defining a point in a multidimensional displacement space. As a

structure deforms, it traces out a displacement parhin this space.

2.2.2 Structure State

Each set of displacements corresponds 1o a deformed state, for the structure as a whole and
for cach element. The element deformations are related to the element displacements by shape
functions which ideally (although not necessarily) ensurc that geometric compatibility is
satisfied. Element stresses or stress resultants (elemenr actions) are related to corresponding

strains or strain resultants (element deformations) by constitutive relationships of a variety of



possible types.

For any set of element actions there is a set of element resisting forces, ), which satisfies
element equilibrium. These forces are external forces exerted on the element, corresponding
to the element displacements. They are typically defined only in a virtual work sense. The
term "force” includes both translational forces and moments. The element forces can be assem-

bled into a vector of structure resisting forces, Ry,

The structure displacements, element deformations, element actions and structure resist-
ing forces constitute the srrucrure stare. The process of calculating the structure state for the
current displacements is termed state determination. The calculation begins at a reference stafe

and proceeds in the following steps.
(1) The displacement incremeni from the reference state to the current state must be given,
(2) The element deformation increments are caiculated using the shape functions.

(3) The element actions in the current state are calculated, considering the reference state,

the deformation increments, and the constitutive relationships.

(4) The element resisting forces are calculated by equilibrium (typically using the virtual dis-

placements principle) and assembled to give the structure resisting forces.

The current state is an eguilibrium state if the structure resisting forces are equal to the
external forces on the structure, Rg. The externat forces consist of all applied forces and reac-
tions acting externally on the structure, one force for each structure disptacement. In a numer-
ical solution, an exact equilibrium state will never be reached. Rather, a converged siate will be
sought in which the eguilibrium erroris acceptably small. A measure of the equilibrium error is

provided by the vecior of urbalanced forces, Ry, given by:

_BU = _85'—_81 (22])

The criterion for convergence is commonly expressed as a tolerance on a norm of Ry (eg.

Euclidean norm, maximum absolute value).

If an iterative solution fails to arrive at a converged state, it may be necessary to restore



the previous converged state and attempt a new solution. A converged state which is saved to

permit restoration is a backup siate.

2.2.3 Stiflnesses

The structure tangent stifiness (or tangent stiffness matrix), K, is defined by:

dB} = _]_frd (2.2.2)

in which dr is an infinitesima!l increment of displacement and 4R, is the corresponding incre-
ment of resisting force. The process of calculating the tangent stiffness in any siate may be
termed linearization. 1t is performed by calculating and assembl‘mg'the tangent stiffnesses, k7,
of all the elements. The tangent stiffness in the initial undeformed state, K,, is the initial

stiffness. A stifiness, K, which satisfies the finite relationship:

AR = K, A (2.2.3)

is a secant stifiness.

2.2.4 Equilibrium Equations

For a linear structural analysis, the structure displacements are typically found by solving

equilibrium equations of the form:

Kr=R (224
in which r defines the total displacements and R is the total Jead vector. For nonlinear analysis,
the displacements are generally calculated in increments, frequently (but notl necessarily) by
solving equations of the form:

K7Ar = AR (2.2.5)
in which A R will still be termed the load vecror.
The equilibrium equations are most often solved by direct elimination (e.g. Gauss, Crout,

Cholesky), but may alse be solved by iteration {e.g. Gauss-Seidel).



2.2.5 Loads

Displacement of a structure may be caused by applied loads of a variety of types. A static
applied load is conveniently constructed as a combination of a number of separate Io&d patierns,
each multiplied by a load pattern magnitude. The set of load pattern magnitudes constitutes the
load magnitude. A load pattern may define nodal loads, element loads, initial sirain loads, or
imposed displacemeny loqu.

Nodal loads and element loads may consist of point forces, line forces, surface forces,
and/or body forces. A set of forces constitutes a nodal load if its contribution to the load vec-
tor, AR, can be determined without considering the stiffness and/or strength properties of the
elements (e.g. point forces applied directly on 2 node). A set of forces constitutes an element
load if the element properties must be considered in setting up AR (e.g. distributed load along
the length of 2 beam element, which produces "fixed end” forces on the nodes). Nodal and ele-
ment loads conlribute‘forces direcily to both the ioad vector, AR, and the external force vec-
tor, Rr.

Initial strain loads (e.g., temperature change) contribute 1o the load vector, AR, but do
not contribute directly to the external force vector, Rg. As with element loads, the contribu-

tions o AR depend on the stiffness and/or strength properties of the elements.

With imposed displacement loads, displacement increments are specified in particular
directions at particular nodes. That is, in the equilibrium equation:

Krar = AR (2.2.6)
certain terms in Ar are specified, and the corresponding terms in AR are initially unknown.
This is taken in o account in the solution of the equilibrium equations. The nodal forces
corresponding 10 the imposed displacements become external forces (in effect, reactions) on

the structure, and hence contribute to Ry

A load pattern may be fixed or configuration dependenr. The loads in a fixed pattern arc
independent of the displacements {e.g. forces with fixed magnitudes and directions).

Configuration dependent loads vary as the structure deforms (e.g. hydrostatic pressure).

6



2.3 GENERAL CONCEPTS AND TECHNIQUES

2.3.1 General

A number of concepis and computational techniques are of general use in nonlinear struc-

tural analysis. Several of these are reviewed in this section.

2.3.2 Scalar Displacement and Scalar Force

The projection of a displacement vector, r, on a wunit vector, b, in displacement space

defines a scalar displacement, ry, along the direction b. That is,

r, = _bTr (2.3.1)

Similarly, the projection of a force vector, R, on a unit vector b in force space defines a

scalar force along the direction b. That is,

R, = b'R (2.3.2)
~ 2..3.3 Scalar Stiffness
A scalar stiffness, K, is the ratio of a scalar force to a scalar displacement. That is,

ra
7a

e
I>

(2.3.3)

Kb-

o
I=

in which &, and b, are unit vectors. Usually, b; and b, will be the same. The direction of
interest will usually be the direction of either the displacement increment or the load incre-

ment. For these two cases, tangent scalar stiffnesses are calculated as follows.

In the direction of the displacement increment:

Ar
b o= —=L 2.3.4)
= (Ar"Aan*
and hence,
T T
kK, = L AR _ Ar AR (2.3.5)

which is equivalent to:

K, = bTKsb {2.3.6)



In the direction of the load increment:

AR

b = ——a=—rr (2.3.7)
- (BRTAR)
and hence,
ARTAR
= T (2.3.8)
R "ARTAr
which is equivalent to:
Kg = 1/(bTK7' D) (2.3.9)

2.3.4 Stiffness Ratio

A measure of the change in stiffness during an analysis can be expressed as the ratio of a
scalar stiffness in the current staie to a scalar stiffness in the initial state. For example, a scalar

stiffness rario, S,, can be calculated as:

(6rTAR/AFTAY)

= {2.3.10)
! (ArTAR/ArIAY)

in which

Ar = K7'AR

A’n - _]S(»_]A_B
and AR is constant. Alternatively, a scalar flexibility ratio can be calculated as:

T T T
- (ARTAr/ARTAR)  AR'"Ar (2.3.11)

(ARTArJARTAR)  ARTAr,
Bergan [1.2] introduced the concept of a current stiffness parameier, S,, to help contro! the non-
linear solution strategy. This is the inverse of the scalar flexibility ratio defined by Egn.

(2.3.11). This parameter has the following properties.

(@)  The initial value of S, is one. Values greater than one indicate that the structure is stiffer

than it was initially, and values less than one indicate that it is more flexible.

(b} Generally, for a stable structure S, is positive, whereas for an unstable structure it is

negative.



{(c) Where the load magnitude reaches a local maximum, the value of §, is zero.

{(d) The rate of change of S, is related to the nonlinearity of the response. For structures that
are nearly linear S, changes slowly, whereas for structures that are highly nonlinear S,

changes rapidly.

2.3.5 Rank One Symmetric Stiffness and Flexibility Matrices

Let u be a unit vector in displacement space, and let G be a scalar stiffness coefficient.

The stiffness matrix

K, =uGu = Guu' {2.3.12)
is a rank one matrix {i.e., only one nonzero eigenvalue) which has the fol]ow}ing properties:
{a)  Any displacement in the direction of u, say cu, is resisted by a force in the same direc-

tion. That is,

Tu=Gcu (2.3.13)

K,cu=Geuu
(b) Any displacement in a direction orthogonal to u, say u,, is not resisted by any force.
That is,

— T
Kyu, = Guu

u =20 (2.3.14)
Similarly, let U be a unit vector in force space, and let H be a scalar flexibility coefficient. The
rank one flexibility matrix:
Fy = U H_L_/T = Hy_l_/T (2.3.1%)
has the following properties:
(a)  Any force in the direction of U, say cU, produces a displacement in the same direction.
That is,
FoeU=HcUUTU=HcU (2.3.16)

{b} Any force in a direction orthogonal to U, say U,, produces no displacement. That is,

FoU= HUUTY, =0 (2317



2.3.6 Rank One Stiffness Modification

A rank one stiffness matrix can be added 1o a structure stiffness matrix, K, to change the
stiffness in a particular direction, u, by an amount G. The modified stiffness matrix, K, is
given by:

K, =K+ Ggyr (2.3.18)

The inverse of the modified stifflness matrix is given by the Sherman-Morrison formula

as:

_ _ K'uu" K-
R 1

It follows that adding stiffness G to the structure in the direction y is equivalent to sub-

tracting flexibility H in the direction U, where:

1
H = 2.3.20
G+ u"K'u ( )
and

U=K'u (2.3.21)

2.3.7 Modified Equilibrium Eguations

When a rank one stiffness modification, G u u”, is made, the solution of the modified

equilibrium equations can be found as follows.

(1) Perform two back substitutions with the unmodified K:

v = K7'AR (2.3.22)
‘_"2 = Kx (2.3.23)
(2)  Perform two dot products:
B = uly (2.3.24)
y = u'y (2.3.25)

10



(3) Form Ar from:

Y2 (2.3.26)

AL = 3‘“[1/G+7
2.3.8 Higher Order Madification

Higher order modifications to a stiffness matrix can be made by a series of rank one
modifications. Calculation of the displacement increment can then be done with successive use

of the Sherman-Morrison formula.
2.4 NEWTON-RAPHSON ITERATION

2.4.1 General .

The Newton-Raphson (NR) iteration scheme is well known as a method for the analysis
of nonlinear structures. It is reviewed here as a basic solution scheme to introduce the con-

cepts and operations found in the more general methods to be discussed later.

2.4.2 Algorithm

If the current state is an eguilibrium state, the iterative sequence for NR iteration is as

follows (Fig. 2.1).

{1} The tangent stiffness is formed in the current state.

(2) A load increment is added to the structure. A displacement increment is found by solving
the equilibrium equations.

(3) A state determination is carried out, and the structure resisting force is calcuiated.

{4) The unbalanced force is calculated. Convergence is checked. If converged. go to Step 1.

If not converged, continue.
(5} The tangent stiffness is formed in the new current state.

{6) The displacement increment duc o the unbalanced load is calculated.

11
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(7} A state determination is carried out, and the structure resisting force is formed.

(8) The unbalanced force is calculated. Convergence is checked. If converged, go to Step 1.

If not converged, go to Step 5.

2.4.3 Phases

There are two phases in the above sequence. In the advancing phase (Steps 1-4), a load
increment is applied. In the correciing phase (Steps 4-8), the load magnitude is kept constant

and the solution iterates in search of a converged state.

2.4.4 Tasks
The solution scheme can be separated into four distinct tasks, as follows, each of which is

performed in both phases.

(a)  Linearization. The 1angent stiffness is formed in the current state.

(b)  Displacerment Prediction. A displacement increment is obtained by solving the equilibrium
equations.

(c)  Stware Determination. The element deformations, element actions, element resisting forces.
and structure resisting forces are calculated.

(d) Convergence Check. The external force vector is formed, and the unbalanced force vector

is checked for convergence.

2.4.5 Weaknesses

The basic NR scheme, although effective in many cases, is not necessarily the most
economical solution scheme and does not always provide rapid or reliable convergence. Some

weaknesses of the method are as follows.
{a) Linearization Expense.

The computation involved in linearization and equation solving may be large. When the
solution is nearly converged, only small changes will take place in the tangent stiffness,
and a new linearization may nol be needed.

13



(b)

(d)

(e)

(f)

Load Increments.

The size of each load increment must be predetermined. Because the structure stiffness
varies throughout the analysis, equal load increments will produce unequal displacement
increments and unequal unbalanced forces. A load increment that preduces reasonable
displacements with fast convergence initially may predict large dispiacement increments
with slow or nonexistent convergence as the structure yields and becomes flexible. A
substantial amount of trial and error may be needed to determine appropriate load incre-

ments.

Step Direction.

The analyst will usually have no alternative but to specify positive load increments. In
many structures the strength can reach a maximum and then decrease. In order to follow
an equilibrium path in such cases, negative load increments must be applied.

Constant Load lheration.

The lcad is kept constant during the iteration. If the structure strength reaches a max-
imum then decreases, it is possible for the applied load to be greater than the structure
strength, in which case convergence is impossible (at least near the predicted displaced

state).

Sudden Nonlinearities.

In some problems distinct "events” occur that drastically alter the stiffness {for example.
gap closure). 1f such an event occurs in either the advancing or correcting phase, the cal-
culated displacement increment may be a poor estimate of the actual increment ang resujt
in a large unbalance.

Nonconvergence.

If the analysis does not converge in a specified number of iterations, it is necessary either

to quit or to continue from a nonconverged state.
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(g) Path Dependent State Determination.

The structure state is updated at each iteration, and nonconverged states are thus used as
reference states. Because of the path dependent behavior of inelastic materials, use of
nonconverged reference states may cause the calculated material response to differ from

the true response.

2.4.6 Variations on NR

To avercome some of the weaknesses of NR iteration, a number of modifications of the
basic scheme have been proposed. These modifications can be classified into four categories, as

follows:

(a) Variations in the stiffness formation.

(b) Variations in the advancing phase.

(c) Variations in the correcting phase.

(d) Special logic in case of Jarge unbalance or nonconvergence.

The modifications are discussed in the following sections.
2.5 VARIATIONS IN STIFFNESS FORMATION

2.5.1 Modified Newton Methods

If the analysis is not highly nonlinear, the structure stiffness will not change much
between iterations. 11 is then possible to use the existing stiffness matrix to predict the dis-
placement incremeni. Displacements predicted in this way may not converge as fast as those
predicted with an updated stiffness, but because each iteration is cheaper, more iterations can
be performed for the same cost. Variations on the NR scheme that do not reformulate the
stiffness every iteration are commonly termed modified Newton methods. Some of these are

described below and illustrated in Fig. 2.2,

In initial stiffness iteration, the initial stiffness matrix, K,, is used for all the displacement

increment calculations. In constanr stiffness iteration the stiffness matrix is updated for the
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advancing phase and then kept constant during the iteration. Other variations include {(a)
updating the stifiness in the advancing phase and at specified iterations during the correction
phase and (b) reforming the stiffness when necessary according to some specified criteria (e.g.,

keep K constant after the solution converges to some preliminary tolerance).
2.5.2 Quasi-Newton Methods

2.5.2.1 General

An alternative to reformulating the stiffness every iteration or keeping the stiffness con-
stant is modifving the stiffness in some way. This is the idea behind "quasi-Newton" methods.

Modifications are typically done so that the following guidelines are met [3].

(a) The modified stiffness matrix, X,,. for any iteration, i, should be a secant stiffness matrix

for the displacements calculated in the previous iteration, A_rH. That is,

KnAr™' = R[— R/ = R~ Ry (2.5.1)
where Rjand R( are the resisting and unbalanced forces, respectively, at the beginning of
iteration i.

(b} If K is symmetric and positive definite, K, should also be symmetric and positive

dehnite.
(c) Displacement increments using X, should be cheap to calculate.

There is extensive literature on methods of stiffness modification, most of it from fields
other than structural analysis. The mathematical formulation and convergence properties of
some of these methods have been explored in [3], [4], and [5]. The method which has
received the most atiention for structural analysis is the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method [3]. 1t proposes modification of the stiffness matrix by addition of a rank two

matrix. Consider first, however, the quasi-Newton method based on a rank one modification.
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2.5.2.2 Rank One Stiffness Correction

The simplest stiffness modification is the addition of a rank one matrix. There is only one

rank one correction which satisfies Eqn. {2.5.1), given by:

Ky, = K+ K, (2.5.2)

where

K, = —=RURPT/I(RPTAL! (2.5.3)

This correction changes the structure stiffness by an amount:

—(RDT R,
G = RHTE (2.5.4)

in the direction of the current unbalanced force, R/,

The inverse of the modified stiffness, from Eqn. (2.3.19), is given by:

K;' = (2.5.5)

= (R{!

K RU(RPT K™
—~ROTEK R

‘The calculation of the modified displacements, using Eqns. (2.3.22) through (2.3.26), requires
only one back substitution.

A problfem with the rank one update is that it may not be numerically stable, because the
vectors in the denominator of Eqn. (2.5.5) may be orthogonal [5). Higher order corrections

have thus been developed, among them the rank two BFGS correction.

2.5.2.3 BYGS Correction

The BFGS modification is a rank two update, given by:

Kg = K+ (2.5.6)

(Ri'=RY RE'-RPT  REYRINT
(R RNT Ar™! (RGDTALH!

The stiffness is changed in two directions. The first of these is given by the change in the
resisting force for the last ileration. For constant load iteration, this can be calculated as the

change in the unbalanced force, namely:

(Ri = Ri) (2.5.7)
Hy = - LD
=L WRE-RPTRE-RIN
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A stiffness of magnitude

(2.5.8)

is added in this direction,

The second stiffness change is in the direction of the unbalanced force for the previous

iteration, namely:

Ry {2.5.9)
Uy = —e 3.
S REYTREY
A stiffness of
(REDTRE!
—_— (2.5.10)
T OREHTar"

is subtracted in this direction.

The inverse of the modified stiffness can be found by two applications of the Sherman-
Morrison formula, as discussed by Dennis and More [5]. The calculation of the displacement
increment (which involves only one back substitution) is presented in a convenient form by

Matheis and Strang [3].
2.6 YVARIATIONS IN THE ADVANCING STEP

2.6.1 Variable Load Magnitude

Strategies that automatically select the load increment during the analysis have been
developed to avoid having to specify the load increments in advance. Three strategies are con-
sidered here. In the first two, the aim is to keep the unbalance at the end of the advancing
phase constant in each step. In the third, the aim is 10 keep the number of iterations in each

step constant.

2.6.1.1 Bergan’s Current Stifflness Parameter

Bergan {2] uses the current stiffness parameter, S, as a guiding quantity for selecting the

load increment. If the linearization is regarded as a first order Taylor series approximation, the
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truncation error in the advancing phase varies with (a) the load increment and (b) a norm

measure of the second derivative of r with respect to the load magnitude. That is,

T = calrl (2.6.1)
where
7 = truncalion error;
¢ = aconslant:
a = load increment; and
|7l = norm of the second derivative of r with respect to the load magnitude.

Because S, is an approximation to the first derivative of the displacements (with respect to the
load magnitude), the change in S, divided by the change in load magnitude is an approximation
to the second derivative. Hence, the truncation error will be approximately constant in each
step if the load increment is chosen so that the change in S, is constant. The choice of the load

increment is given by:

a' = alc/AS)! (2.6.2)
where
¢ = aconstanl:
a' = load increment in Step i; and
AS;' = change in S, in Step i-1.

This method of step selection will sesult in small steps where the sofution is strongly non-

linear and large steps in nearly linear regions.

2.6.1.2 Scaling Based on Unbalance

Step scaling based on the unbalance can be done directly if a state determination is added
1o the process. In this method, a trial step is taken, a state determination is performed. and the
unbalance is calculated. If the unbalance is 100 large (based on some tolerance), the step is

repeated with a reduced loud increment.
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The procedure is as follows:
(1) Select a load increment (based on any method).
(2) Solve for the displacement increment.
(3) Perform a state determination.
(4) Calculate the unbalance.

(5) If the unbalance is greater than the specified tolerance, scale the load increment according

to:
a, = a U/|Ry! (2.6.3)
where
o, = scaled load increment;
U = unbalance tolerance; and
{Ryl = norm of unbalanced load.

and repeat from Step (3). If the unbalance is less than the tolerance, enter the correcting

phase.

Because the unbalance varies approximately quadratically with the displacement increment
(based on the truncation error}, a linear scaling will, in most cases, be sufficient to reduce the

unbalance below the allowable tolerance.

2.6.1.3 Scaling Based on Mumber of lerations

A method in which the load increment is adjusted based on the number of iterations has
been suggested by Crisfield [6). The magnitude of each step (except the first, which must be

specificd) is calculated as foliows for Step

al = ai—] ]/11—\

where
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I™' = number of iterations for convergence in Step i-1;
a’™' = load increment for Step i-1; and
1 = desired number of iterations for convergence.

If a large number of iterations was required for convergence in the preceding step, the

load increment for the current step wiil be smaller.
2.6.2 Displacement Control

2.6.2.1 General

An alternative to varying the load increment is to control the size of the displacement
increment directly. Various measures of the displacement increment can be controlled, includ-
ing (a) a single displacement degree of freedom, (b) a scalar displacement, and (¢) the "arc

length” of the increment.

2.6.2.2 Single Degree of Freedom Control

Haisler and Stricklin [7] describe a step-by-step method without iteration in which a
selected displacement (the controlled displacement) is increased by a specified amount in each
step. In any step, the unbalanced load at the beginning of the step, plus some load increment,
is applied. The magnitude of the load increment is initially unknown and is chosen to increase
the controlled displacement by the specified amount. Because the displacement vector for any
step consists of two parts, one due to the load increment and one due to the unbalance, the dis-
placements cannat simply be scaled linearly to meet the displacement constraint, and a special

computational procedure is needed to determine the required load magnitude,

The computational procedure proposed by Haisler ‘and Stricklin involved partitioning of
the equilibrium equations as follows.
(1Y The equilibrium equations are set up Keeping the applied load vector and the unbalanced

force veclor separate;

KAr = apAR:+ Ry (2.6.4)



()

(3)

where
a g = unknown load increment magnitude; and
ARy = external load vector corresponding to a unit load magnitude.

The equilibrium equations are partitioned to separate out the controlled displacement:

1 1
[ﬁ:ﬁ f;—’; = gg — AT fzg;i (2.6.5)

where
K, = stiffness matrix with row i and column i removed;
K, = column i of K without element i:
Ky = rowiof K without element i;
K, = element K,
() = vector without element i;
()? = element i of vector: and
AT = controlled displacement increment.
The partitioned equations are solved for ag:

ap = (Rj— KnA— KnAr)/(KnB— Rp) (2.6.6)

where

Aisgiven by K4 = R/~ A7 K3 and

Feree

J_B is given by !S”ﬁ = E‘&.

Batoz and Dhatt [8] recognized that the Haisler-Stricklin scheme is computationally

cumbersome and suggested a simpler scheme. The steps are as follows:

(1)

Solve the equilibrium equations separately for the displacements due to the unbalanced

force and an applied load of arbitrary magnitude:

Kary

I

ARy (2.6.7)

KArp = AR (2.6.8)
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(2) Combine the two displacement vectors so that the controiled displacement has the

required magnitude:

AT = {(Ary); +ap(Arg), (2.6.9)
where
( }, = element i of vector: and
A7 = controlled displacement increment.
Hence,
ay = (AT — (Ary) M/ (Arp), (2.6.10)

2.6.2.3 Sczlar Displacement Steps

The method described in the preceding section has been presented in a generalized form
by Powell and Simons [9]. In this method, the controlled displacement is not limited to a sin-

gle d.o.f. but is a scalar displacement characterized by a unit vector, . That is,

A7 = bTAr = bTAry+apbTar Q.6.11)

and hence,
ap = (AT — bTAr))/ b A, (2.6.12)

2.6.2.4 Arc Length Steps

An alternative method of advancing the solution has been proposed by Riks [10] and
Crisfield [6) and discussed by Ramm [11). The "arc length" of the step, s, is defined by the
Euclidean norm of a vector containing both the load increment and the displacement incre-

ment. That is,

s = (af+4arTan" (2.6.13)
in which
Ar = displacement increment; and
ag = load increment.
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The arc length, in geometrical terms, is an approximation to the length of the step in
displacement-load space. Choice of the load increment based on a specified arc length, s, gives

a load increment of:

(~arfdre = (Arfare)?— (1 + Arfare) (ArfAr, — 507 2.6.14)
[43 = O,
£ (1 + ArfArg)

Because both the Joad increment and the displacement increment are included in s, the
size of the load increment should be determined primarily by the largest of these quantities.
When the structure is very flexible, the displacements will control the size, and when the struc-

ture is very stiff, the load increment will control.

This choice of load increment has some weaknesses, however. First, .the quantities that
make up the arc length do not have the same units (one is a load term and the rest are dis-
placements}. Because of this, the relative influence of the load term depends on the units
which are chosen. Second, since the arc length contains all degrees of freedom, local non-

linearities tend 1o get lost or diluted, especially in analyses with many d.o.f.

From numerica)l experience, Crisfield recommends that the load increment not be
included in the calculation [6]. The resulting strategy is then a displacement controlled method
using the Euclidean norm of the displacement increment to control the size of the load incre-

ment. The resulting load increment is given by:
ar = (~ArfAry + (ArfAr )2 — (ArfAre) (ArlAr o) M)/ (ArfAry)  (2.6.15)

2.6.3 Choice of Step Direction

2.6.3.1 General

In an analysis of a buckling structure, the load magnitude may increase up to a maximum
value and then decrease as the structure continues to deform. This will be termed load reversal.

For load stepping, negative load increments must be applied to follow the equilibrium path.

For displacement stepping a similar problem may occur, in which the controlied displace-

ment reaches a maximum and then decreases. To continue the analysis past this displacement
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reversal, it is necessary to change from positive to negative displacement steps.

In general, if the controlled quantity (load or displacement) does not experience a rever-
sal, then the step direction can simply be chosen as positive in each step. If, however, the con-
trolied quantity is subject to reversals, a procedure to choose the step direction is necessary.
Two procedures are considered here, the first based on the current stiffness parameter and the

second on continuity of the displacement increment.

2.6.3.2 Current Stiffness Parameter

The current stiffness parameter, S, is used by Bergan to choose both the load magnitude
and the step direction. When the load magnitude changes direction, §, passes through zero.
Monitoring S, enables the direction of the load increment to be chosen as follows:
(1} Initially S, is equal to one and the load increment is positive.

(2) As the stifiness decreases, §, becomes smaller. As long as S, remains positive, the load
increment is chosen as positive.

(3) If §, passes through zero and changes sign, the load increment is chosen negative, until
S, passes back through zero and becomes positive.
‘One problem with this technique is that §, also changes sign when the scalar displacement

re, given by:

r, = ArTAR (2.6.16)
changes sign for a positive AR. In this case, S, passes through infinity and the step direction
should remain the same. In problems with strong local nonlinearities, it may not always be
obvious whether S, changes sign by passing through zero or infinity. This uncertainty could

cause confusion in the step direction choice.

2.6.3.3 Continuity

Crisficld [6] describes a method for cheosing the step direction based on continuity of the

displacement increments. The idea is thal in order to keep the solution from going back on
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itself, consecutive displacement increments should be in the same direction. In each step, the
dispiacement direction that makes the smaller angle with the previous displacement increment

is the one chosen.

2.7 VARJATIONS IN THE CORRECTING PHASE

2.7.1 Genetal

As discussed in Section 2.4.6, the basic NR scheme has some weaknesses in the correct-
ing phase. First, iteration is done with constant load, which may lead to divergence. Second,
path dependent state determination is used, which c¢an introduce errors in the material
response. Third, no provision exists to alter the magnitude or direction of the displacement

increment found by solving the equilibrium equations.

Several variations in the correcting phase have been proposed 1o overcome some of these
weaknesses. Instead of iterating with constant load, schemes have been devised that (a) do not
iterate, {b) do not iterate when the stiffness is very low, and {¢) iterate with constant displace-
ment. Schemes that alier the magnitude and/or direction of the calculated displacement incre-
ment in order to aid convergence have also been developed, among them line search methods
to select the magnitude and the conjugare Newton method to alter the direction. Also, instead
of path dependent state determination, path independent staie determination is easily incor-

porated. These variations are discussed below.

2.7.2 No lteration

The scheme proposed by Haisler and Stricklin {described in Section 2.6.2.1) is performed
without iteration. The solution is carried out step-by-step with the unbalanced load and an

increment of load applied each step.

Bergan suggests that iteration be suspended only near critical points {2]. He recommends
the use of the current stiffness parameter, S,. as a criterion for iteration, and iterations are per-

formed only if S, is not near zero. Because §, is a measure of the scalar stiffness of the struc-
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ture, it will be close to zero when the structure stiffness is very low.

In schemes with iteration, it is usual to iterate until the unbalanced load is small so that
only small unbaiances are carried over from step to step. In schemes that do not iterate, sub-
stantial unbalances can be carried over, which may contribute to a drift from the equilibrium

path.

2.7.3 Displacement Control

Methods that control displacements can be used in the correcting phase, and can be
thought of as a special case of the method described in Section 2.6.2.2 for controlling the dis-
placement increment in the advancing phase. In the correcting phase, itgration with some
scalar displacement held constant corresponds to specifying the increment in that scalar dis-
placement to be zero. Using the notation introduced in Section 2.6.2.2, iteration is done with:

A7 = bTAr = 0 (2.7.1)
The load increment is calculated by:
ap = —~bTAry/bTArg {2.7.2)

An important point 10 note is that if iteration is done at a constant displacement, the load
magnitude varies during the iteration. For a softening structure, the load magnitude will typi-
cally decrease during iteration. For structures that reach a maximum Jload, the problem of
iterating at a load magnitude greater than the structure strength is overcome, because the load

magnitude is automatically reduced during the iteration.

2.7.4 Path Independent State Determination

In NR iteration the state is updated in each iteration, so that the state determination is
path dependent. It has been noted [2,12] that path dependent state determination can lead to
significant errors if the path followed is far from the equilibrium path. An alternative scheme is

to usc path independent state determination.

If the element strains increase progressively during the iteration sequence, there will usu-

ally be little difference between the final states calculated by the two schemes. However, if the
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strains increase in early iteralions and then decrease, the path dependent scheme may
incorrectly unload yielded elements. Consider, for example, an analysis of a softening structure
with constant displacement iteration. The [oad magnitude typically decreases in the iteration
phase, although the accumulated load increment from the beginning of the step is positive. A
path dependent scheme will allow unlecading of yieided elements as the load decreases, whereas
a path independent scheme will not because it is based on the accumulated displacement incre-
ment. Path independent state determination is thus recommended for displacement controlled

analysis.

2.7.5 Line Search

The displacement increment found by solving the equilibrium equations does not neces-
sarily give the best estimate of the equilibrium state. Instead, some multiple of the displace-
ment increment, BAr, may be better. In line search methods, 8 is chosen to minimize some
measure of the unbalance, usually by a successive trial procedure (i.e., successive values of 3

are chosen based on previous values of 8 and Ry, until Ry is reduced below some tolerance).

Matheis and Strang 131 discuss the use of a line search routine in conjunction with the
BFGS stifTness modification scheme. The technique can be used with any method for choosing

the displacement increment.
The line search is carried out as follows:
Phase 1. Upper and lower values of 8 are sought which bound a zero value of unbalance.

(1) A measure of the unbalance at the beginning of the step (8 = 0) and for the calcu-

lated displacement increment (8 = 1)} is calculated as follows:

R,(B8) = Ar” Ry(B) (2.7.3)
R,(8) is a measure of the external work that the unbalanced load does on the struc-

ture.
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(2)

Phase 2:

M

()

If the unbalance measures are of opposite signs, the zero is bounded, so enter Phase
2. If the unbalance measures are of the same sign, then double the step size (8 =
2) and recalculate the unbalance, this time using 8; = 1 and 8; = 2 as the bounds.
Repeat this step until a zero unbalance is bounded or until a maximum number of
trials have been performed.

Find B to minimize the unbalance.

Based on the values of B, and B, and the corresponding unbalances, use a linear

approximation to choose the new value of 3. That is,

B R,(B)) (B,=B1)
B = B+ Rn(ﬁl)_Rn(Bi) (2.7.4)

Evaluate the unbalance for this value. If it is less than a specified tolerance, then
guit. If not, choose the two points with opposite signed unbalances and repeat Step
(1). Convergence is obtained when the unbalance is less than a specified proportion

of R,{0). That is, when:

R,(B} < c¢R,0). (2.7.5)

where ¢ = a conslant between zero and one.

2.7.6 Conjugate Newton

In all of the methods described so far, the search direction has been calculated by solving

the equilibrium equations. Irons [13] has introduced the conjugate Newton method in which

the direction of the displacement increment is modified in each iteration. It is based on an idea

from the conjugate gradient method {(an iteralive method of solving function minimization

problems), in which & set of search directions that are conjugate result in an efficient search.

In the conjugate Newion method, a displacement, increment Ar’, is first calculated as in

constant stiffness iteration. This increment is then modified so that it is conjugate to all previ-

ous directions, i.e., so that:

ArYTKAr =0 j=i=1, i=2..., 1 (2.7.6)
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The steps are as follows for each iteration.

(1) An unmodified displacement increment is obtained as:

Ar' = K-'AR' 2.7.7)

(2) The displacement increment is made conjugate to the previous displacement increments.

arl = Ar'— carl! (2.7.8)

where ¢ is a constant determined so that:

(ArDT K Arih =0 (2.7.9)
where
Ar! = modified displacement increment; and
A;f’_t = displacement increment from previous iteration.

{3) The magnitude of the step is calculated by a line search.

2.8 SPECIAL LOGIC

2.8.1 General

In cases where large unbalances develop or the iteration fails to converge, it may be
necessary to implement special logic in order to complete the analysis. Three schemes which

have been developed to deal with these problems are considered in this section.

The first scheme aims to reduce the unbalance by making it orthogonal to the external
force. The second scheme is applicable to problems in which a large unbalance may result from
distinct "events® {e.g. gap closure). A straiegy that advances the solution from event to event
is described. Finally, for problems thal do not converge within a specified number of iterations,
a scheme to restart the analysis from the last converged state is described, along with a pro-

cedure to predict convergence.

2.8.2 Orthogonalized Unbalance

Bergan (1] has introduced a method in which the unbalanced force is orthogonalized with

respect to the applied force in each iteration. The method is as foliows for each iteration.
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(D
(2)
(3)

4)

Calculate the displacement increment in the usual way.

Perform the state determination and calculation of the resisting force, R,.

Calculate the unbatanced force, Ry.

Calculate the component of Ry parallel to Rp and subtract it from both Ry and Ry That
is:

Reo = (1.0 - y) R; (2.8.1)
Ryo = Ry—vRe (2.8.2)

where

y = (RIR)/(RIRD

and the subscript O represents an orthogonalized vector.

(5) Check convergence. If converged, go to the next step. If not, repeat from Step (1).

2.8.3 Event-to-Event Strategy

A strategy for problems that are linear (or nearly linear) between well defined evenisis to

advance the solution from event to event, rather than take specified steps with iteration. This

strategy is discussed, for example, by Porter [14]. The purpose of the event-to-event strategy is

to follow the equilibrium path closely at all times by updating the stiffness and state each time

an event occurs. In this way the unbalance will, ideally, never get large.

(1)
)

(3)

The procedure is as follows, assuming the current state is an equilibrium state.
Linearize about the current state.
Calculate the displacements for an arbitrary load increment.

Predict the next event. Events typically correspond to changes of state in the elements,
and event prediction calculations must be performed for each element to determine
whether the calculated displacement increment will cause an event. If an event is
predicted, a scale factor is determined that will bring the solution just to the predicted

event.
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(4) Scale the displacement increment and add it to the current displacements. Update the

structure state. Continue from Step (1).

Although the event-to-event strategy 1s presented above as a solution scheme in itself, it is pos-

sible to incorporate the concept of event prediction into solution strategies of NR type.

2.8.4 Restepping If No Convergence

Despite the wide range of strategies available, convergence will not always occur. In such
cases, it is helpful to have a resiepping capability available. This means that if convergence is
not obtained at the end of the correcting phase, the step size is reduced and the step is taken
again from the backup state. Hibbitt has incorporated this type of procedure into the program

ABAQUS [15].

2.8.5 Convergence Prediction

The restepping option can be augmented by the use of a routine that predicts conver-
gence. After a specified number of iterations, a prediction is made as to whether the solution
will converge in the allowable number of iterations. If nonconvergence is predicted, the restep-

ping option is exercised. This type of prediction can save doing futile iterations.

2.9 DESIRABLE FEATURES OF A GENERAL ALGORITHM

It is possible to construct a general solution algorithm which retains the structure of NR
iteration but which incorporates most of the variations described in the preceding sections. The
desirable features of such a general algorithm are those that overcome the difficulties of stan-

dard NK iteration. Some of these features are as follows.
(1} Strategies that avoid the high cost of linearization:

(a} Modified Newton methods, such as initial stiffness and constant stiffness iteration,

that keep the stiffness constant for a number of iterations.
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(b} Quasi-Newton methods, such as BFGS, that use simple modifications {o the stiffness

matrix.
(2}  Aids to convergence, especially for buckling and snap-through problems:
f2) Variable step size based on the current stiffness parameter or the unbalanced load.
(b) Line search in the correcting phase 1o minimize the unbalance.
(c) Direct control over the displacement increment.
{d) Iteration with constant displacement.
{e) Choice of path dependent or path independent state determination.
{3) Special strategies, such as event-to-event, to deal with particular types of behavior.
(4) Resiepping capabilities combined with iteration prediction to deal with nonconvergence.

An algorithm which incorporates these features is described in the following chapter.
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3. GENERAL SOLUTION SCHEME

3,1 TASKS AND PHASES

A general solution scheme for static nonlinear analysis has been and incorporated into the
ANSR structural analysis program. The scheme is similar in structure to Newton-Raphson
iteration. However, whereas there are four distinct tasks in NR iteration (linearization, calcula-
tion of new displaced state, state determination, and convergence check), there are only three
in the general scheme. Linearization, which is performed every iteration in NR iteration, is not
considered as a separate task but only as an option for selecting a new displaced state. The

three tasks are:

(a) Selection of new displaced state.

(b) State determination.

{c} Calculation of unbalanced load and checking of convergence.

As in NR iteration, there are two phases in the analysis, namely, the advancing phase and

the correcting phase. The three tasks are performed in each of the two phases.

3.2 STEPS AND SEGMENTS

An analysis is carried out in a series of analysis steps, each consisting of an advancing phase
and a correcting phase. The step size (which defines the increments of load and displacement for
the step) is controlled by a stepping parameter, which may be either a load or displacement quan-
tity. For load stepping, the increment of load magnitude is controlled and the displacements fol-
low. For displacement stepping, the increment in some displacement measure is controlled, and
the load magnitude follows. The displacement measure will usually be a specified scalar dis-
placement but mayoaisD be {a} a displacement norm or {b) the most critical of a set of specified

scalar displacements. Details are presented later.

A complete analysis is divided into a number of analysis segments, each of which is divided

into a number of analysis steps. The amount of lead or displacement applied in a segment is
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defined by the analyst in terms of a segment vaiue, V;. For load stepping, the segment value is
the change in load magnitude for the segment. For displacement stepping, the segment vaiue is
the change in a scalar displacement or displacement norm. Within any analysis segment, step-
ping continues until the segment value is reached. The step size, S, is conveniently expressed
as the product of a step factor, f; (a number between 0 and 1), the segment value, and a direc-
tion factor, d, (which is either 1 or -1). That is,

S = fVd; (3.2.1)
The step factor may be specified in advance by the analyst, or it may be determined automati-

cally to satisfy certain criteria, depending on the stepping option selected by the analyst.

3.3 DISPLACEMENT INCREMENT

For the advancing phase, and in each iteration of the correcting phase, a displacement
increment must be determined. The basic procedure for calculating a displacement increment

is as follows.

(1) Displacements due to (a) the unbalanced load and (b) an arbitrary increment of applied

load are calculated by solving the equilibrium equations:

Ary = K'Ry (3.3.1)

Arg = K™'ARg (33.2)

(2) The displacement increment is formed as a linear combination of these two displacement
vectors. That is,

Ar = Ary+taghrg (3.3.3)

A constraint equation on either a load or displacement quantity is used to select the incre-

ment of applied load, o . For load stepping, a g is specified directly, whereas for displacement

stepping it is calculated using a displacement constraint equation.
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3.4 ADYANCING PHASE

3.4.1 General

In the advancing phase, a load increment and a corresponding displacement increment
must be determined to advance the solution along the equilibrium path. The nature of the step

is determined by the stepping parameter, step factor, and direction factor.

3.4.2 Determination of the Step Factor

The step factor is a fraction of the complete segment value (load or displacement) to be
applied in the step. For example, for load stepping a step factor of 0.5 means that half of the
segment load is applied in the step. Similarly, for displacement stepping, a step factor of 0.5

means that half of the segment displacement is applied in the step.

The choice of step factor is an important consideration when advancing the solution. Too
large a step may put the search far from the equilibrium path and may result in slow conver-
gence or even divergence in the correcting phase. On the other hand, too small a step may be

expensive because a large number of steps will be required to complete the analysis.

The step factor may remain constant throughout the analysis or it may vary. The avail-

able options are discussed in the following sections.

3.5 EQUAL STEPS

The analyst may specify that the solution is to be advanced in equal steps so that the step-
ping parameter is incremented by the same amount each step. For load stepping, the load
increments will be equal and the displacement increments will generally be unequal. Con-
versely, for displacement stepping the displacement increments will be equal (as measured by

the stepping parameter) and the load increments will generally be unequal.

The disadvantage of using equal steps is that the step factor must be chosen in advance by
the analyst, and it may be difficult to select an appropriate step factor. It may be advantageous,

therefore, to allow steps of variable size.
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3.6 VARIABLE STEPS

3.6.1 General
Two options for variable steps are included in the scheme, namely (a) scaling based on
unbalance and (b) scaling based on speed of convergence. Other options could be added; for

example, scaling based on Bergan's current stifiness parameter.

3.6.2 Scaling Based on Unbalance

Scaling the step size based on the unbalance insures that some norm of the unbalance at
the advancing phase never exceeds a specified value, U. An advan;:ing step is taken using the
current step factor, and the unbalance norm is calculated. If the unbalance exceeds U, the step
size is reduced and the step is retaken. This procedure is repeated until the unbalance norm is
below U.

Severzal gcaling processes are possible. The one used in the ANSR implementation of the
scheme is linear scaling, for which the step is scaled by:

5 = SFTUNRE (3.6.1)

where ( )/ = " trial and | Ryl is the unbatance norm.

This method results in smaller steps in regions of high nonlinearity. In the ANSR imple-

mentation, scaling in one step does not alter the step factor for the following step.

3.6.3 Scaling Based on Convergence Rate

In the event of nonconvergence in a step, an option exists to take the step again from the
backup state, with a reduced step size. The assumption is that if convergence is slow (or if
divergence occurs) the step size is too large and a smaller step would improve the chance of
converging. The amount of the sleh reduction is specified by the analyst, by means of a reduc-
tion factor. For example, if the reduction factor is 0.25, the step factor is divided by four and

the step is retaken.

If convergence is very rapid, the step size is assumed to be too small. The step factor is
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then increased by a specified multiple if the solution converges in less than some minimum
number of iterations. Use of this option will result in large steps where the solution is nearly

linear.

For scaling based on convergence, the modified step factor is used in the following step.
3.7 STEPPING PARAMETER

3.7.1 General

The stepping parameter provides the analyst with the means of controlling the load and
displacement increments. The best choice for the stepping parameter depends on the particular

problem being solved.

3.7.2 Load Stepping

If the stepping parameter is the load magnitude (load stepping), then a g in Eqn. (3.3.3) is
equal to the step factor and is thus specified directly. The load increment for the advancing
phase is the step factor times the segment value. Typically, for load stepping the load magni-
tude will be kept constant during the correcting phase, so that the load magnitude for the step

is specified. However, it is possible for the load magnitude to vary during the correcting phase.
3.7.3 Displacement Stepping

3.7.3.1 General

For displacement stepping, the stepping parameter may be chosen as (a) a displacement
norm, (b} a scalar displacement, or (c) the most critical of a set of scalar displacements. The
quantity a g in Eqn. (3.3.3} is then determined so that the stepping parameter is incremented an

amount equal to the step size. The procedure is as follows.

3.7.3.2 Norms

If a displacement norm is chosen as the stepping parameter, a g is chosen to make the

norm of the displacement increment equal to the absolute value of the step size. For the
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Euclidean norm this gives:

ap = (—ArfAry + ((ArfAr)? — (ArfArg) (ArfAry — SDYH/6rfAry  (37.1)

For the infinity norm (maximum absolute value):

agp = min [(S;— (Ary) )/ (Bre) ) (3.7.2)

in which

( ); = i" component of vector; and

minl ] = minimum absolute value for all i.
i

3.7.3.3 Scalar Displacements

If a scalar displacement is chosen as the stepping parameter, a stepping vector, b, must

be specified. In the advancing phase, the scalar displacement is incremented by an amount

equal to the step size. Hence,

(a)

(b)

)

ap = (S, — bJAry)/ bIArE (3.7.3)
Some possible choices for the stepping vector are as follows.
Single degree of freedom: A single d.o.f., j, can be incremented by specifying b, as a vec-

tor with all zero terms except term j=1.

Strains: For an element such as a truss bar, displacement differences provide a measure
of longitudinal strain. For example, consider a truss bar aligned paralle!l to the global X
axis, with longitudinal degrees of freedom i and j. In this case, a stepping vector that

measure the change in length is given by:

bl = [LO-10---0+10.] (3.7.4)

in which the -1 value is for d.o.f. i and +1 value for d.o.f. j.

Rotations: Approximations 1o element rotations can be constructed as displacement
differences. Consider, for example, a truss bar along the global X axis, and let degrees of
freedom k and 1 be perpendicular to the bar. The rotation of the element, r,, is given

approximately by:
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r, = ({An,-QAnDY/L (3.7.5

in which
(Ar)  is component k of Ar;
(Ar),is component | of Ar; and
L is the element length.

The appropriate stepping vector is:

b7 = [L0O~1/LO---0+1/L0.] {3.7.6)
in which the term -1/L is for d.o.f. k and the tern +1/L for d.of. L

3.7.3.4 Critical Measure

In the above examples, the stepping parameter was a single predetermined quantity. In
some analyses, there ﬁay be more than one quantity that needs to be controlled as the analysis
progresses. The scheme implemented in ANSR allows up to four scalar displacements to be
specified as possible stepping parameters. In any step, the stepping parameter actually used is
the most critical of these possible choices.

The procedure is as follows:

(1) For each scalar displacement, a stepping vector, b,, and a corresponding segment value,

V,, are specified.

(2) In any step, the vector that is the most "sensitive” to the applied load is used as the critical

vector. Sensitivity is determined by a variable C, given by:

C = bIArdV, (3.7.7)

(3) The value of a g follows from the critical vector as:

ar = (Vo fd,— bIAIO bIArs (3.7.8)

in which V. is the segment value for the critical vector, bg.

The use of a critical vector to determine the step size has the advantage that the stepping

parameter for the solution can change as the character of the solution changes. This feature
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allows control of local nonlinearities (assuming they can be reflected in appropriate stepping

vectors).
3.8 STEP DIRECTION

3.8.1 General

The calculation of the quantity ag in Eqn. (3.3.3) has been discussed so far in terms of
using the step size to scale the Joad or displacement increment. The sign of the step size, how-
ever, depends on the value of the direction factor, which is either one or minus one. The step
direction must be chosen so that the solution advances in each step (i.e. so that the converged
state found at the end of the step does not lie on a portion of the equilibrium path which has
already been caiculated). In general, the stepping parameter may reverse its direction during

the analysis, and it is not always obvious in which direction the step should be taken.

Two methods are offered for the choice of the step direction. The first is to identify a
direction parameter to guide the direction. If a direction parameter is specified, the step direc-
tion is chosen so that the value of the direction parameter increases in every step. The second

method specifies the step direction indirectly, using Bergan’s current stiffness parameter.
3.8.2 Direction Parameter

3.8.2.1 General

The best choice for the direction parameter in any analysis is not always known in
advance. The essential requirement of a direction parameter is that it increase monotonically
throughout the analysis. Even in the most complicated cases such parameters exist, but it may
take trial and error by the analyst to find them. Possible choices include the load magnitude

and various scalar displacements.

3.8.2.2 Load Magnitude

If the direction parameter is load magnitude, then the load is increased in every step (i.e.
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a g is always positive). This option will work only for structures that do not buckle and lose

strength.

3.8.2.3 Critical Vector

If the critical measure option is used to determine the stepping parameter, then the critical
vector may be used to determine the step direction. The direction is chosen so that the scalar
displacement, r,, defined by:

ry = bIAr (3.8.1)

is positive.

3.8.2.4 New Vector

A new vector, different from the stepping vectors, can be specified as the direction vecror.
Any of the scalar displacements discussed as stepping parameters are possibie direction parame-

ters.

3.8.3 Bergan's Current Stiffness Parameter

The second method for direction choice is automatic load step selection by use of
Bergan’s current stiffness parameter. In this method, the sign of ay starts out positive and
changes sign each time §, passes through zero. Although the step direction is not specified

directly, its value is determined once the sign of « z is specified.

3.9 CORRECTING PHASE

3.9.1 General

Following the advancing phase, one or more iterations are typically done 1o correct the
solution in the region of the predicted state. ldeally, a converged state that is close to an equili-
brium state (as measured by the unbalance) is found. However, specification of a large toler-

ance may allow significant unbalance.

Iterations are performed by holding an irerarion paramerer constant and adiusting the
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remaining degrees of freedom. The iteration parameter may be either the load magnitude or a

displacement quantity.

3.9.2 Constant Load Iteration

For constant load iteration, the iteration parameter is the load magnitude. Keeping the
Joad magnitude constant is accomplished by setting e = 0. The displacement increment is

thus:

Ar = Ary (3.9

3.9.3 Constant Displacement Iteration

3.9.3.1 General
A displécement quantity can also be chosen as the iteration parameter. An iteration vec-
tor, b, is specified to identify a scalar disptacement (the iteration parameter) which is to be kept
constant during the iteration. The magnitude of af is then chosen so that the change in the
iteration parameter is zero. That is,
ap = —bfAry/bfArg (3.9.2)
Some possible choices for the iteration parameter are discussed below. These include

external work, arc length, and specified scalar displacements.

3.9.3.2 Constant Work Iteration

If a vector equal to the applied load vector is chosen as the iteration vector, then the
quantity held constant during iteration is the external work (i.e. the applied load does no exter-

nal work on the structure during the correcting phase). For this case:

by = Rg (3.9.3)

3.9.3.3 Constant Arc Length

Iteration with constant “arc length” has been discussed by Riks [10] and Crisfield [6]. Itis

based on keeping the arc length, s, defined by:
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s = (a}+ArTAD® (3.9.4)

constant throughout the iteration. This leads to a quadratic equation for a .
A simpler method is to iterate in such a way that the displacement increment for any
iteration is normal to the accumulated displacement increment for the step, 2 method discussed
by Ramm [11]. The iteration vector in this case is the displacement increment accumulated

from the beginning of the current analysis step.

3.9.3.4 Constant Scalar Displacement

Several choices of scalar displacements for the advancing phase have been considered in
Section 3.7.3.3. Any of these can be used for the correcting phase. For example, if the itera-
tion vector is a unit vector with one in the j% term and all other terms are zero, the j* d.o.f.

will be held constant during the iteration.

3.10 LINE SEARCH

An option is provided to carry out a line search on the magnitude of the displacement
increment in each iteration of the correcting phase. The purpose of the line search is to choose
the magnitude of the displacement increment that produces the smallest unbalance for the
current external forces. The magnitude of the displacement increment is varied by multiplica-
tion by a scalar, 8, while the external forces are held constant. The scaled displacement incre-
ment, Ar, still satisfies the iteration condition, namely, that the iteration parameter remains

constant during iteration.
The procedure is as follows:

(1) Perform state determination and unbalance calculations for three values of 8, namely, B
=1, B=p, and B =g, where 8, and B, are upper and lower limits specified by the

analyst. Let the corresponding unbalance norms be R,(1), R,(8,), and R,(8)}.

(2) A new value of B is predicted by choosing the value that corresponds to the minimum

R, based on a parabolic approximation through the three known points. That is,
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where

A = (BIR,(By) + BFR,(8y) + BIR,(B) — BT R,(BY — B R, (B) — BIR,(BN)/D
B = (81R,(B) + B2R,(By) + B3R, (B) — B R, (B — B2R,(B) — B3R, (B2 D
D = (BB, + BB+ BiB1— BIBs— BIB — BIBY)

and initially

B =1 By=8. Bi=8,

(3) Step {2) is repeated using the three most recently calculated points until one of the fol-

lowing conditions is met:

(a} Convergence is reached. That is,

R,(B) < R, (0 (3.10.2)

in which R,(0) is the unbalance at the beginning of the iteration and t is a constant

specified by the analyst.
(b) The predicted value of B is beyond the specified limits,
{c) The allowable number of trials is exceeded.

If condition (a) applies, the next iteration is begun from the state corresponding {o the latest
value of B. If condition (b} or (c) applies, the next iteration is begun from the state with the

smallest unbalance.
3,11 UPDATING THE STIFFNESS

3.11.1 General

It has been mentioned that the cost of reforming the stiffness each iteration can be high
and that stiffness reformulation is not always necessary for convergence, especially if the change
in stiffness between iterations is small. In general, the optimum frequency with which the
| stiffness matrix is reformed depends on the problem being solved. For this reason, the fre-
quency with which the stiffness matrix is updated is left as a variable to be specified by the

analyst. Because the stiffness is not necessarily updated each iteration, the stiffness matrix used
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in solving for the displacement increment is not always the current tangent stiffness (although
for optimal convergence, it should generally be a close approximation to the current tangent

stiffness).

3.11.2 Update Frequency

3.11.2.1 General

The frequency wiih which the stiffness is updated may be specified at both the step level
and the iteration levei. Linearization is done only at the specified intervals and is always based
on the current state. With appropriate choice of stiffness update frequencies, technigues such
as initial stiffness iteration, constant stiffness iteration, and NR iteration can be specified, as fol-

lows.

3.11.2.2 Initial Stiffness Iteration

Initial stifiness iteration is obtained if the step frequency is specified greater than the max-
imum number of steps and if the iteration frequency is specified greater than the maximum
number of iterations. Thus, the stiffness is reformed only once, at the beginning of the

analysis.

3.11.2.3 Constant Stiffness Iteration

Constant stiffness iteration is obtained if the step frequency is one and the iteration fre-
quency is greater than the maximum number of iterations. The stiffness is then formed only at

the beginning of each step.

3.11.2.4 Newton-Raphson Iteration

Newton-Raphson iteration is obtained if both the step frequency and the iteration fre-

quency are equal to one. The stiffness is then reformed every iteration.
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3.12 BFGS STIFFNESS MODIFICATION

As a compromise between reforming the stiffness and keeping it constant for a given

iteration, an option is included to modify the stiffness matrix. The modification used is the

rank two update to the inverse of the stiffness matrix that was introduced in discussion of the

BFGS method.

3.13 EVENT PREDICTION

3.13.1 General

In analyses where event occurrences can cause large changes in stiffness, it may be advan-

tageous to predict the next event, advance the solution just beyond it, and then update the state

and stiffness. This procedure will keep the solution close to the equilibrium path.

3.13.2 Algorithm

0}

(2)

(3)

4)

The procedure used to predict events in the advancing phase is as follows.

The displacement increment is calculated.

If it is determined that the caiculated displacement will cause an event, the displacement
increment is scaled to bring the solution just beyond the first predicted event.

A state determination is performed and Ry is calculated.

If it was determined in Step {2) that an event would occur, the state is updated and
linearized. Since only a fraction of the step has been applied, the solution returns to Step
(1) to apply the remainder of the step. If no event was predicied, the solution enters the

correcting phase.

The same procedure is followed for events predicted in the correcting phase, but in Step

(1) the increment is chosen to keep the iteration parameter constant.
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3.14 STATE DETERMINATION

3.14.1 General

The structure resisting force is calculated by assembling the element resisting forces in the
current displaced state. The element forces are obtained by state determination calculations,

using the displacement increment accumulated from the reference state to the current state.

3.14.2 Frequency of Updating

The frequency with which the state is updated is specified by the analyst (in terms of
number of iterations) and is independent of the stiffness update frequency. This allows the
analyst to specify path dependent or path independent state determination, or any scheme in

between.

In displacement stepping for softening structures, the load magnitude decreases during
iteration. To avoid false unloading of yielded elements, path independent state determination

should be used.

3.14.3 Path Dependent State Determinaiion

Path dependent state determination is chosen by specifying that the state be updated every

iteration.

3.14.4 Path Independent State Determination

Path independent state determination is chosen by specifying the state update frequency
to be larger than the maximum number of iterations. The state at the beginning of the step is
then used as the reference state for all state determinations in the step. Path independent state

determination has the advantage that the reference states are all converged states.

3.15 EXTERNAL LOAD

The external load is the total load applied to the structure in the current state, It is calcu-

lated using the current values of the load patiern magnitudes, allowing for any configuration
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dependence.
3.16 UNBALANCE

3.16.1 General

The unbalanced force vector, Ry, is calculated as the difference between the external
applied forces and the structure resisting forces. A norm of the unbalance vector is typically
used as the measure of the unbalance of the system. Inp the ANSR implementation, the

Euclidean norm or the infinity norm of Ry can be chosen as the unbalance measure.

3.16.2 Exclusion of Rotational DOF

The rotational degrees of freedom may be excluded in calculation of the unbalance. This
option is useful because it eliminates combining quantities with different units (.e., forces and

moments).

3.16.3 Other Measures of Unbalance

Other measures of unbalance are possible but are not inciuded in the ANSR implementa-
tion. Clough and Bergan [16] suggest using the displacements due to the unbalanced load.
Matheis and Strang [3] use an energy measure defined by:

R, = ArlRy (3.16.1)
in which Ar, is the displacement increment in the advancing phase.

The validity of each of these measures as an indication of convergence depends on the
state of the structure. When the system is stiff, large load unbalances correspond to small dis-
placement increments. Conversely, when the structure is flexible, small load unbalances can
correspond to large displacement increments. This is a disadvantage of basing convergence only
on a norm of Ry A disadvantage of energy measures is that if the veclors Ry and Ar, are
nearly orthogonal, the energy norm will be small no matter how large the individual vectors

may be.
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3.16.4 Convergence Rates

Extensive studies have been performed on the convergence properties of Newton-type
methods (see, for example, [4,51). For standard NR iteration, it has been determined that the
convergence rate is quadratic for continuously differentiable functions, provided the predicted
displacement increment is not too large. The convergence rates for modified Newion and

quasi-Newton methods tend to be linear or super-linear.
3.16.5 Predicting Convergence

3.16.5.1 General

Because the methods being used have the property of linear, super-linear, or quadratic
convergence, it should be possible to predict whether or not a given iteration sequence is going
to converge within the specified number of iterations. It may require a few iterations before a
good prediction can be made, and these predictions will not always be correct. However, the
advantage of predicting nonconvergence is that it can save computation if it appears that the

solution will not converge.

3.16.5.2 Algorithm
The algorithm for convergence prediction is as follows.
Quantities Speciﬁgd:
Iteration at which prediction begins = [,
VYiejzhting factor for convergence rate = w.
Unbalance tolerance = .
Maximum allowable iterations = n.

(1} For iteration i, a convergence ratio, ¢;, is computed by dividing the unbalance a! the end

of the iteration, R/, by the unbalance at the beginning of the iteration, R)™\. That is,

¢ = RIJR (3.16.2)
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{2) An estimated convergence rate, C,, is calculated by taking a weighted average of the indi-
vidual convergence ratios. The ratio is weighted so that the most recent iterations are

counted more heavily. That is,

2+ wez+ o+ wile

C = . (3.16.3)
’ 1+ wid o 4w
in which
C; = i"value of ¢; and
w! = wraised to the i power.

(3) The unbalance is extrapolated using the current unbalance and the estimated convergence

rate. The number of iterations, k, required to reach convergence is estimated as:

k = In(U/R)D/C, (3.16.4)

This value of k is truncated to an integer value, and the number of iterations to conver-

gence is then predicted to be k+1.

(4) If the number of iterations is less than the maximum allowable, the iteration continues.

If not, nonconvergence is predicted, and the restepping option s exercised.

Convergence prediction begins on an iteration number specified by the analyst. The use
of an iteration other than the second allows the solution to settle down before the prediction
begins. In general, the more information available for prediction, the more accurate the predic-

tion will be.

A number of grace iterations is allowed so that the solution will continue if the predicted
number of iterations to convergence is small, even if the total number is greater than the max-
imum allowable. The number of grace iterations is specified as a proportion of the number of
iterations completed. For example, a proportion of 0.5 means that if 8 iterations have been
completed and a prediction of 3 iterations to convergence is made, the solution will continue

even if the maximum number of iterations is 10.
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4. EXAMPLES

4.1 GENERAL

The solution strategy described in the previous chapter has been tested on a series of four
examples. The types of behavior of particujar concern in selecting the examples have been (a)
buckling. with loss of strength in the post-buckling range, and (b} gap closure, with sudden

stifTness increase.

The first three examples have been chosen because they have complex buckling charac-
teristics, and hence, are particularly challenging for the solution strategy. In these examples,
the most important aspect of the strategy is the selection of appropriate stepping and direction
vectors. The fourth example has several gap elements, which close and produce large changes
in stiffness. This type of behavior also challenges the strategy. In this example, the important

aspect is the use of the event-to-event option.

4.2 TRUSS STRUCTURE WITH ELASTIC FOLLOW-UP

If a structure buckles locally and subsequently loses strength in the buckled region, it can
exhibit the type of behavior shown in Fig. 4.1. I the wnbuckled length is shor, the strength
loss can be progressive, as in curve A. However, if the unbuckled length is long, the load-
deflection curve can turn back on itself, as in curve B. This reversal occurs when. for any
given shortening, &, in the buckled region, the strength loss corresponds to an extension in the

unbuckledregion which exceeds 8.

The response of a structure that exhibits this type of behavior is shown in Fig. 4.2. As
the structure buckles, the axial force decreases and the bars cutside the buckling region extend.
At some distance away from the buckling region, the accumulated effect of the bar extensions
is greater than the decrease in length of the buckle. Beyond that point, the displacements

reverse direction.

The natural approach to analysis of such a structure would be to control displacement A,

at the loaded point. With this choice, however, no solution can be obtained past point 7 on the
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load-deflection curve. If, however, the length of the buckle, A, is controlled, the sclution

proceeds without difficulty.

The controlling parameters for the solution were as follows:
(1) The stepping parameter, A ,, was increased by 1.0 in each step.
(2) Tteration was performed with A , constant.
(3) The convergence tolerance {Euclidean norm of R,) was 0.01.

The input data for ANSR-II is listed in Table 4.1. The maximum number of iterations in any

load step was 4.

4.3 SHALLOW ARCH WITH COMPLEX SNAP-THROUGH

Other structures can exhibit load-deflection behavior similar to that of the previous exam-
ple, but for different reasons. Consider the unsymmetric, shallow, elastic arch shown in Fig.
4.3. The figure shows the load-displacement response at two points, one at the crown and one
on the unloaded right-hand side of the arch. The displacement at the crown of the arch, Ais,
undergoes two reversals as the arch snaps through, and hence, is a poor choice for the con-
trolled displacement. The displacement A, however, increases monotonically and is a good
choice.

The controlling parameters for the analysis were as foliows:

(1) A, was increased by 1.0 in each step.
(2) TIteration was performed with Ay constant,

(3) The convergence tolerance (maximum value of R,) was 0.01.

The input data for ANSR-III is listed in Table 4.2. The maximum number of iterations in any
load step was 6.

Although the analysis proceeded without difficulty when A was controlled, attempts to
obtain a solution by controlling A,s {or any displacement on the left side of the arch) were

inconsistent, and mostly unsuccessful, past point 6 on the joad-deflection curve. For example,
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use of Ajg as the controlling parameter converged for a step size of 1.0 (maximum number of

iterations = 7) but not for a step size of 0.5.

This example and the previous one show that complex behavior can be analyzed provided
that the displacement used to control the solution is well behaved. It may not always be obvi-
ous in advance what displacement to conirol. In most practical cases, however, it should not be

too difficult to identify an appropriate displacement.

4.4 TRUSSED TOWER BUCKLING UNDER LATERAL LOADS

In some structures overall structural deformations may dominate initially, but local buck-
ling deformations may then develop and dominate the later response. Because the local buck-
ling deformation is initially negligible, it cannot be used to control the initial response, and
some overall displacement must be used. After buckling occurs, however, it may be necessary
to control the buckling deformation in order to obtain a solution. That is, different displace-
ments must be controlled at different times.

Fig. 4.4 shows the response of a trussed tower subjecied to lateral load. The structure
behaves approximately linearly up to a load P = 180, at which time the jowest diagonal brace
buckles. For this example the stepping parameter was chosen using the "critical measure”

option. The controlling parameters were as follows:

(1) The stepping parameter was chosen as the most critical of the following three displace-

ments: (a) Ag¢/6, (b) A2, (c) A,

(2) The direction parameter was 0.5 Ay— A; (that is, essentially the buckling deformation in

the lowest brace).
(3) The stepping parameter was held constant during iteration.
(4) The convergence tolerance (Euclidean norm of R,) was 0.05.

The input data for ANSR-III is listed in Table 4.3. The maximum number of iterations in any

step was 6,
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As the behavior changes, control of the analysis switches between the stepping parame-

ters, as shown in Fig. 4.4. Initially displacement A4 controls, then A;, and finally Ag

This example also indicates the importance of the choice of direction paramet;;r. Because
the direction parameter must monotonically increase during the analysis, none of the displace-
ments used for the stepping parameter is suitable. Also, selection of the step direction using
Bergan’s current stiffness parameter (S,) is difficult because S, changes sign by passing through
infinity as Agreverses. At point 9 in the load-deflection relationship, it is not obvious from the
previous values of §, that the next load increment should be negative (i.e., that S, passed

through infinity and not zero).

4.5 PIPE RING CRUSH

Because nonlinear analyses are typically carried out as a series of linear analyses, drastic
stiffness changes can make a solution difficult to obtain. One type of behavior that is particu-

larly troublesome is gap closure, which is found, for example, in contact problems.

Fig. 4.5 shows the response of a ring (cut from a section of pipe) subjected to loading
between two plattens. As the pipe crushes, the points of contact between the pipe and plattens
move outwards, as shown in Fig. 4.6, This is a practical problem taken from an experimental
study by Peech et al {17].

The pipe was modelled using shell elements [18]. One-quarter of the ring was modelled
with 9 elements, each subtending 10 degrees of arch. The contact between the pipe and the
plattens was modelled using gap elements [19], with zero stiffness in tension and very large
stiffness in compression. Because of the presence of gap elements, it was important to use the

option for event prediction to keep the unbalance from getting excessively large.

The loading was specified as a prescribed displacement of the platten. The controlling

parameters were as follows:

(1} A, was increased in each step.
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Iteration was performed with A, constant,

The convergence tolerance {(maximum value of R,) was 0.02.

If the solution failed to converge in 10 iterations, or if nonconvergence was predicted
starting from iteration 5, the step size was multiplied by 1/4 and the step was repeated. If
the solution converged in less than 3 iterations, the step size was doubled for the next
step.

The event prediction option was used with a limit of 3 events per step. This allowed one

gap to close and unload, and another gap to open before event calculation was suppressed.

The input data for ANSR-II are listed in Table 4.4, Although this problem is substantially

larger than any of the previous examples, the strategy remained stable over the wide range of

stiffnesses encountered in the analysis. The results are plotted in Fig. 4.5, together with experi-

mental data from tests by Peech et al. The agreement is close up to a platten displacement of

1.5 inches. After that discrepancies appear, most probably because of discretization problems

(the 10-degree arc elements are not able to capture the behavior accurately when the deforma-

tions are very large).
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Table 4,3, ANSR-II input data for third example.
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5. CONCLUSIONS

5.1 OBJECTIVES ACHIEVED

The obiectives of the research, as outlined in Section 1.2, have been substantially fulfilled,

as {oliows.

(1

(2)

(3

(4)

The tasks and tools found in static nonlinear analysis have been described using a con-
sistent {erminoclogy.

By generalizing Newton-Raphson iteration, a framework was developed which allows com-

parison of different existing strategies and assists in the development of new strategies.

A general strategy has been developed and incorporated into ANSR-IIl. This strategy can

be applied to the solution of a wide variety of problems, yet is reasonably easy to use.

The strategy has been shown to be stable and efficient for several problems that would be

troublesome Tor most existing strategies.

5.2 WEAKNESSES

tegy.

D

(2}

Although substantial progress has been made, weaknesses still exist in the proposed stra-

Some of these are as follows.

The strategy still requires skill on the part of the analyst, particularly in choosing the step-
ping and direction parameters. Although it should not be difficult to choose appropriate
parameters for many practical analyses, automated schemes for choosing the parameters

would be a convenience.

Application of the solution strategy has been limited to smali problems. Resources were

not available 1o test the strategy on large-scale practical problems.
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Je STATIC ANALYSIS

Omit entire Section J if JANTYP # STAT,

Ji. TITLE
COLUMNS NOTE HAME DATA
1 - 5(I) 1 NSAS No. of analysis segments

9 - 80(A) Optional analysis title.
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d2. SEGMENT SPECIFICATION

NSAS sets of cards, one set for each analysis segment,

J2(a). SOLUTION CONTROL

COLUMKS
5(1)
10(1)
11 - 20(F)
25(1)
30(1)
31 - 40(F)
41 - 45(1)
46 - 50(1)
55(1)

NOTE

NAME

KTYS

KPAS

DISI
NVES

KDIR

STEPI

MAXST

IEVENT

KTYI

DATA

Step type:
(g) 1: Load stepping.
(b) 2: Displacement stepping.

Stepping parameter (KTYS = 2 only):
(2) 1:  Euclidean norm,

(b) 2: Maximum value.

(e} 3: Specified stepping vector(s)
Segment value (KPAS = 1,2 only).

3 only)

No. of stepping vectors (KPAS
Max = 4. Default = 1.

Step direction codes

(g) 1: Increase load magnitude each step.

(b) 2: Increase scalar displacement using
(critical) stepping vector (KPAS = 3
only).

(¢) 3: Increase scalar displacement using
direction vector,

(d) 4+ Determine sign of load inerement
using Bergan's current stiffness
parameter.

Initial step factor for segment, Must be
between 0.0 and 1.0.

Maximum no. of steps. Analysis stops if this
no. is exceeded. Default = no limit.

Element event codes
(a) 0: No event check.
(b) 1: FEvent check, no limit on number of

events.
(e) NO1): Check events, up to N events in
any step.

Iteration types
(8) 1: Constant load.
(b) 2: Constant scalar displacement,
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60(1)

65(1)
70(1)

KPAI

MAXIT
1IQUIT

Iteration parameter (KTYI = 2 only).

(a) 1: Constant work.

(b) 2: Constant "arc length".

{c) 3: Critical stepping vector (KPAS must
= 3).

(d) 4: Iterstion vector,

Max. no. of iterations per step.

Termination eode:

(8) 0: If MAXIT is exceeded, restep.
Inelude card J2(e).

(b) 1: 1f MAXIT is exceeded, stop.

{e) 2: If MAXIT is exceeded, continue,
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J2(b).

SPECIFIED VECTORS

NVES sets of cards defining the stepping vectors if KPAS = 3. Plus
one set of cards defining the direction vector if KDIR = 3. Plus one
set of cards defining the iteration vector if KPAl = 4,

Each set consists of & vector title card plus one or more cards
defining the terms ot the vector. The number of terms for &ny veetor
must not exceed 20.

Jz(b) (i) VECTOR TITLE

COLUMNS NOTE NAME  DATA

1 - 51 NDGC No, of terms in this vector (max. = 20).
6 - 15(F) FACI Segment value (stepping vectors only).
16 ~ 80(A) Optional title.

J2(b) (ii) VECTOR DEFINITION

As many cards as needed to specify NDGC terms, 4 terms per card.

COLUMNS NOTE NAME DATA

1

11
21
41
61

5(1) Node no.

10¢1) D.O.F. number (1-6).

20(F) Weighting factor. Default = 1.0.

40 Similar data for second term (2I5,F10,0).
60 Similar data for third term (215,F10,0).
80 Similar data tor fourth term (215,F10.0).

85



J2(c). STIFFNESS, STATE ARD OUTPUT CORTROL

COLUMNS NOTE

1~ 5
6 - 10(1)
15(1)
16 - 20(1)
25(1)
30(1)

NAME

KUFS

KUFI

KBFGS

KUFSD

KPRIN

KSAVE

DATA

Step contro] for stiffness update. Stiffness
is updated every KUFS steps. Default = 1.

Iteration control for stiffness update,
Stiffness is updeted every KUFI iterations.
Default = 1,

BFGS code:
(a) 0: No BFGS.
(b) 1: BFGS between stiffness updates.

Iteration control for state update. State is
updated every KUFSD iterations. State is
automsatically updated at the end of every
step.

Results print code:

(a) 0: No printed output.

(b) 1: Print at end of analysis segment
only.

(e) 2: Print every step.

(d) 3: Print every iteration.

Results save code:

() 0: Do not save on restart file,

(b) 1: Save on restart file (at the end of
the analysis segment).
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J2(d).

COLUMRS
5

10(1)

11 - 20(F)
21 - 30(F)
31 - 40(F)
41 - 45(p)

46

ab

55(F)

65(F}

75(F}

HNOTE

RAME

INRM

MOCD

TOL

TOLF

UNBLS

MAXLS

UPLS

BMLS

TOLS

CORVERGENRCE CRITERIA

DATA

Unbsalance type:
{a) 0: Max. value,
{b} 1: Fuclidean norm.

Moment eode for unbalance:
(a) 0z lgnore moments.
{b) 1z Include moments.

Unbalance tolerance, for all except last step
of segment.

Unbalance toleranee for lest step. Default
= TOL.

Unbalence for step size scaling (must be

greater than TOL).

{a) 0.0: No scaling.

(b) >0.0: Linear sealing of step size until
unbalance is less than UNBLS.

Maximum no. of line searches for any
iteration, Default = none, (Leave rest of

card blank.)

Upper line search limit (multiple of
calculated displacement). Must be > 1.0,

Lower line search limit {multiple of
caleulated displacement). Must be between
0.0 and 1.0,

Convergence tolerance for line search

{multiple of initial unbslance for the
iteration}. Must be between 8.0 and i.0.
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J2(e).
COLUMNS
1 - 10(F)
11 - 20(F)
21 - 25(I)
26 ~ 30(1)
31 - 40(F)
41 - 50(F)
55(1)
56 - 65(F)
66 - 75(F)

NOTE

NAME

DNFAC

STPMIN

LQUIT

MINIT

UPFAC

STPMAX

ITPR

GRACE

WIFAC

RESTEPPING CRITERIA (omit if IQUIT not 0}

DATA

Multiplier for step fector reduction, If
MAXIT is exceeded step factor is multiplied
by DNFAC. Defgult = 0.25.

Minimum allowable step factor, as a multiple
of the initial step factor. Default = 1/64 =
0156,

Termination code:

{a) 0: If STPMIN is reached, continue with
step factor STPMIN.

{b) N: If mcre than N attempts are made to
reduce the step factor below
STPMIN, stop the analysis.

Lower limit on the number of iterations for
step factor increase. If convergence is
obtained in MINIT or fewer Iiterations,
multiply step factor by UPFAC,

Multiplier for step factor increase., Defsult
= 4,

Meaximum allowable step factor as & multiple
of the initial step factor. Default = 1.

Convergence prediction code;
() 0: No prediction.
(b) N: Start prediction at iteration N.

Grace ratio. If predicted no, of additional

iterations for convergence is less than
(GRACE}*(current iteration no.)

then iteration continues even if MAXIT is

exceeded, Default = 0,5.

Weighting factor for iteration prediction.
The convergence ratio of the ecurrent
iteration is weighted 1.0, &t the previous
iteration 1,0/WTFAC, ete., Default = 1.0,
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J2(f). STATIC LOAD PATTERK APFLICATION
The total number of static load patterns is
NPAT = NPNF + RPFF + NPTP + NPP4 + NPND

from Card F1., Static load patterns are numbered in the sequence that
they are input.

Use as many cards as needed to specify NPAT scale factors (one per
pattern), 8 per card in 8F10.0 format. To omit any pattern, specify a
zero or blank scale factor.
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USER GUIDE NOTES

ROTE J.1

Static loads and imposed displacements can be applied in a number of static
load segments, Each segment is obtained by combining static force and/or
imposed displacement patterms. FEach segment can be sepplied in & number of
steps that are either load-controlled or displacement-controlied. For each
step the solution is typically found in a number of iterations, the iteration
path depending on the solution strategy selected, The results at the end of

any segment may be saved on the restart file.

A different solution strategy may be specified for each new load segment.
The scale factors for the load and displacement patterns may also be

different from one segment to the next.
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EARTHQUAKE ENGINEERING RESEARCH CENTER REPORTS

NOTE: Numbers in parentheses are Bccession Numbers assigned by the Mational Technical Information Service; these are
followed by a price code. Copies of the reports may be ordered from the National Technical Information Service, 5285
port Royal Road, Springfield, Virginia, 22161. Accession Numbers should be gquoted on orders for reportg (PB -== ===)
and remittance must accompany each order. Reports without this information were not available at time of printing.
The complete list of EERC reports (from EERC 67-1) is available upon request from the Harthquake Engineering Research
Center, University of California, Berkeley, 47th Street and Hoffman Boulevard, Richmond, California 94804,

UCB/EERC-77/01 "PLUSH - A Computer Program for Probabilistic Finite Elsment Analysis of Seismic Soil-Structure Inter-
actien," by M.P. Romo Organista, J. Lysmer and H.B. Seed - 1977 (PBS8L 177 651)A05

‘

UCB/EERC-77/02 "Soil-Structure Interaction Effects at the Humboldt Bay Power Plant in the Ferndale Earthguake of June
7, 1975," by J.E. Valera, H.B. Seed, C.F. Tsal and J. Lysmer =~ 1377 {(pB 265 795)a04

UCB/EERC-77/03 "Influence of Sample Disturbance on Sand Response to (Cyclic loading,” by K. Mori, H.B. Seed and C.K.
Chan -~ 1977 (PB 267 332)A04

UCB/EERC-77/04 "Seismological Studies of Strong Motion Records," by J. shoja-Taheri - 1977 (PB 269 655)Al0

UCB/EERC~77/05 Unassigned

UCB/EERC-77/06 "Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings,” by No, 1 -
8. Bresler; Mo. 2 ~ B. Bresler, T. Ckada and D. Zisling; No. 3 - T. Okada and B. Bresler; No. 4 - V.V,
Bertero and B. Bresler - 1577 (PR 267 354}Aa08

UCB/EERC~77/07 ™A Literaturs Survey - Transverse Strength of Masonry Walls," by Y. Omote, R.L. Mayes, S.W. Chen and
R.W., Clough -~ 1977 (pB 277 933)A07

UCB/EERC-77/08 "DRAIN-TABS: A Computer Program for Inelastic Farthguake Response of Three Dimensional Buildings,“ by
R. Guendelman-Israel and G.H. Powell -~ 1877 (PB 270 693)A07

UCB/EERC-77/09 "SUBWALL: A Special Purpose Finite Element Computer Program for Practical Elastic Analysis and Design
of Structural Walls with Substructure Option," by D.Q. Le, H. Peterson and E.P. Popov -~ 1977
(PB 270 567)A0S5

UCB/EEZRC-77/10 "Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks," by D.P. Clough
{PB 272 280)al3

UCB/EERC-77/1) "Earthguake Engineering Research at Berkeley - 19278," - 1977 (PB 273 S0T)A09

UCB/EERC-77/12 “Automated Design of Earthquake Resistant Multistory Steel Building Frames," by N.D. Walker, Jr. = 1977
(PB 276 526)A09

UCB/EERC-77/13 "Concrete Confined by Rectangular Hoops Subjected to Axial lLeads," by J. Vallenas, V.V. Bertero and
E.P. Popov - 1977 (PR 275 165)A06

UCB/EERC-77/14 “Seismic Strain Induced in the Ground During Earthquakes," by Y. Sugimura - 1977 {PB 284 201)A04
UCB/EERC-77/13 Unassigned

UCB/EERC-77/16 "Computer Aided Optimum Design of Ductile Reinforced Concrete Moment Resisting Frames," by 5.W.
zagajesgki and V.V. Bertero - 1977 {(PB 280 137)A07

UCB/BERC-77/17 "Earthquake Simulation Testing of a Stepping Frame with Energy-Absorbing Devices," by J.M. ¥elly and
D.F. Tsztoo - 1977 (PB 273 506)A04

UCB/EERC-77/18 "Inelastis Behavior of Eccentrically Braced Steel Frames under Cycliec Ioadings," by C.W. Roeder and
E.P. Popov - 1977 (PB 275 526)}AlS

UCB/EERC-77/19 "A Simplified Procedure for Estimating Earthquake-Induced Deformations in Dams and BEmbankments,” by F.I.
Makdisi and H.B. Seed ~ 1977 (PB 276 820)}A04

UCB/EERC-T77/20 "The Performance of Earth pams during Earthquakes,'" by H.B. Seed, F.I. Makdisi and P. de Alba -~ 1377
{PR 276 821)1A04

UCB/EERC-77/21 "Dynamic Plastic Analysis Using Stress Resultant Finite Element Foymulaticn," by P, Lukkunapvasit and
J.M. Kelly - 1977 (PB 275 453)A04

UCB/EERC-77/22 “Preliminary Experimental Study of Seismic Uplift of a Steel Frame,”" by R.W. Clough and A.A. Huckelbridge
1977 (PB 278 763}A08

UCB/EERC-77/23 ‘"Earthquake Simulator Tests of a Nine-Story Steel Frame with Columns Allowed to Uplife," by A.a.
Huckelbridge - 1977 (pB 277 944)A02

UCB/EERC-77/24 "Nonlinear Soil-Strncture Interaction of Skew Highway Bridges," by M.~C. Chen and J. Penzlen - 1977
{PR 276 176)A07

UCB/EERC-77/25 "Seismic Analysis of an Offshore Structure Supported on Pile Foundations," by D.D.=N. Licu and J. Penzien
1977 {PB 283 180)a06

UCB/EERC~77/26 "Dynamic Stiffnhess Matrices for Homogeneous Viscoelastic Half-Planes,” by G. Dasgupta and A.K. Chopra -
1977 (PB 279 654}A086
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UCB/EERC-77/27 " Practical Soft Story Earthguake Isolation System," by J.M. Kelly, J.M, Eidinger and C.J. Derham =
1977 (PB 276 Bl4)A07

UCB/EERC-77/28 "Seismic Safety of Existing Buildings and Incentives Eoﬁ Hazard Mitigation in San Francisco: An
Exploratory Study," by A.J. Meltsner - 1977 (PE 281 970)A05

UCB/EERC-77/29 "Dynamic Analysis of Electrohydraulic shaking Tables,"® by ©. Rea, S. Abedi-Hayati and ¥. Takahashi
1977 (P8 282 569)A04

UCB/EERC~-77/30 "An Approach for Improving Seismic - Resistant Behavior o: Reinforced Concrete Interior Joints,” by
B. Galunic, V.V. Berterc and E.P. Popov = 1977 (PB 290 870)a06

i
UCB/EERC-78/01 "The Development of Energy-absorbing Devices for Aseismjc Base Isclation Systems," by J.M. Kelly and
D.F, Tsztoco ~ 1978 (PB 284 978)}A04

UCB/EERC-78/02 "Effect of Tensile Prestrain on the Cyclic Response of Structural Steel Connections, by J.G. Bouwkamp
and A, Mukhopadhyay - 1978

UCB/EERC-78/03 "Experimental Results of an Farthguake Isoclation System' using Natural Rubber Bearings,” by J.M.
Eidinger and J.M. Kelly - 1978 (PB 281 ©86)A04

UCB/EERC-78/04 "S¢ismic Behavior of Tall Liguid Storage Tanks," by A. Niwa - 1978 (PB 284 0l7}Al4

UCB/EERC~78/05 "Hysteretic Behavior of Reinforced Concrste Columns SubBected to High Axial and Cyclic Shear Forces."
by 3.W, Zagajeski, V.V. Berterc and J.G. SBouwkamp - 1978 (P2 283 353)Al3

UCB/EERC-78/06 "Three Dimensional I[nelastic Frame Elements for the ANSR-I Program,” by A. Riahi, D.G. Row and
G.H. Powell ~ 1978 (PB 295 755)A04

UCB/EERC-78/07 "Studies of Structural Response to EBarthquake Ground Motion," by OC.A. iopez and A.K. Chopra - 1978
(PB 282 720)}A05

UCB/EERC-78/08 "A laboratory Study of the Fluid-Structure Interaction bf Submerged Tanks and Caissons in Earthquakes,"
by R.C. Byrd - 1978 (PB 284 957)a08

UCB/EERC-73/09 Unagsigned

UCB/RERC-78/10 "Beismic Performance of MNMonstructural and Secondary Structural Elements,” by I. Sakamoto - 1978
(PBB1 154 593)A05 ’

UCB/EERC-78/11 "Mathematical Modelling of Hysteresis Loops for Reinforced Concrete Columns," by S. Wakata, T. Sproul
and 7. Penzien ~ 1378 (pB 298 274)A05

UCB/EERC-73/12 “bamageability in Existing Buildings," by T. Blejwas and B. Bresler - 1978 (PB 80 l&k 978} A0S

UCB/EERC-78/12 “Dynamic Behavior of a Pedestal Base Multistory Buildirng," by R.M. Stephen, E.L. Wilson, J.G. Bouwkamp
and M. Button - 1878 (PB 2B& 550)A08

UCB/EERC-78/14 “Seismic Response of Bridges - Case Studies,” by R.A. Imbsen, V. Nutt and J. Penzien - 1978
(PE 28% 503)Al0

UCB/EERC~T78/15 "A Substructure Technigue for Nenlinear Static and Dynamic Analysis," by 0.5. Row and G,.H. Powell -
1978 (pB 288 077)aAlC

UCB/EERC-78/16 "Seismic Risk Studies for San Francisco and for the Greater San Francisco Bay Area," by C.S. Oliveira =
1978 {PB 81 120 115)A07

UCB/EERC~78/17 "Strength of Timber Roof Connections Subjected to Cyclic Loads," by P. Gulkan, R.L. Mayes and R.W.
~Clough - 1978 (HUD~000 1491)a07

UCB/EERC-78/18 "Response of K-Braced Steel Frame Models to Lateral Loads," by J.G. Bouwkamp, R.M. Stephen and
£.P, Popov - 1978

UCB/EERC-78/19 "Rational Design Methods for Light Equipment in Structures Subjected to Ground Motion," by
J.L. Sackman and J.M. Kelly - 1978 (PB 292 357)A04

UCB/EERC-78/20 "Testing of a Wind Restraint for Aseismic Base Isolation,” by J.M. Kelly and D.E. Chicty - 1978
(PB 292 833)A03

UCB/EERC-78/21 "APOLLO - A Computer Program for the Analysiz of Pore Pressure Generation and Dissipation in Horizontal
Sand Layers During Cyclic or Barthquake Ieading,” by P.P. Martin and H.B. Seed ~ 1978 (PR 292 835)204

UCB/EERC-78/22 "Optimal Design of an Earthquake Isolation System,™ by M.A. Bhatti, X.5. Pister and E, Polak - 1978
{PB 294 735}A06

UCB/EERC-78/23 "MASH - A Computer Program for the Non-Linear Analysis of vVertically Propagating Shear Waves in
Horizontally Layered Deposits,"” by P.P, Martin and H.B. Seed - 1978 (PB 293 101)a05

UCB/EERC-73/24 "Investigation of the Elastic Characteristics of a Three Story Steel Frame Using System Identification,”
by I. Kaya and H.D., McNiven -~ 1978 (PB 296 225)A06

UCB/EERC-T78/25 "Investigation of the Nonlinear Characteristics ©f a Three-Story Steel Frame Using System
Identification,” by I. Kaya and H.D. McNiven - 1978 (PB 301 363)a05
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UCB/EERC~78/26

UCB/EERC-78/27

UCB/ELRC-78/28

UCB/EERC=-78/29

UCB/EERC-79/01

UCB/EERC~79/02

UCB/EERC-79/03

UCB/EERC-79/04

UCB/EERC-72/05

UCB/EERC=79 /06

UCB/EERC~79/07

UCB/EERC-79/08

UCB/EERC~-79/09

UCB/EERC-79/10

UCB/EERC-79/11

UCB/EERC-79/12

UCB/EERC=-79/13

UICB/EERC=-73/14

UCB/EERC-79/15

UCB/EERC-79/16

UCB/EERC~79/17

UCB/EERC~T79/18

UCB/EERC-79/19

UCB/EERC-73/20

UCB/EERC~79/21

UCB/EERC-79/22

UCB/EERC-79/23

UCB/EERC-79/24

UCB/EERC~79/25

“Sgudies of Strong Ground Motien in Taiwan," by Y.M. Hsiung, B.A. Bolt and J. Penzien - 1978
(PB 298 4361406

“Cyclic Loading Tests of Masonry Single Piers: Volume L - Height to Width Ratio of 2," by P.A, Hidalgo,
R.L. Mayes, H.D.. McNiven and R.W. Clough - 1978 (PB 296 211)A07

"Cyclic Loading Tests of Masonry Single Piers: Volume 2 ~ Height to Width Ratio of 1,” by S.-W.J. Chen.
p.A, Hidalgo, R.L. Mayes, R.W. Clough and H.D. McMiven - 1278 (PB 296 212)A09

"Analytical Procedures in Soil Dynamics," by J. Lysmer - 1978 (PB 298 445)A06
"dysteretic Bahavicer of Lightweignt Reinforced Concrete Beam-Column Subassemblages," by B. Forzani,
E.P. Popov and V.V. Bertero =~ April 1979(PB 298 267) ADG6

"The Davelopment of a Mathematical Modal to Predict the Flexural Response of Reinforced Concrete Beams
to Cyclic foads, Using System Tdentification,” by J. Stanton & H, McNiven -~ Jan. 1379(PB 295 375)A10

"Linear and Nonlinear Earthquake Respanse of Simple Torsionally Coupled Systems.," by C.L. Kan and
A.K. Chopra - Feb., 1279(pB 298 262) AQ6

"A Mathematical Model of Masonry for Predicting its Linear Seismic Response Characteristics,™ by
Y. Mengi and #.D. McNiven - Feb. 1979(PB 298 266)A06

"Mechanical Behavior of Lightweight Concrete Confined by Different Types of Lateral Reinforcement,™
by M.A. Manrique, V.V. Berterc and 5.P. Papov - May 1879(PB 301 114} A06

"Static Tilt Tests of a Tall Cylindrical Liguid Storage Tank,” bv R.W. Clough and A. Niwa = Feb.
(PB 301 1673406

1979

"The Design of Steel Energy Abscorbing Restrainers and Their Incorporation inte Nuclear Power Plants
for Enhanced safety: Volume 1 - Summary Report,™ by P.N. Spencer, V.P. Zackay, and E.R. Parker -
Feb. 1979(UCB/EERC-79/07) A0S

"The Design of Stee]l Energy Absorhing Restrainers and Their Tncorporation into Nuclear Power Plants
for EZnhanced Safety: Volume 2 - The Development of Analyses for Reactor System Piping,""Simple Systems”
by #.C. Lee, J. Penzien, A.¥X. Chopra and K, Suzuki "Complex Systems” by G.H. Powell, E.L. Wilson,
R.W. Clough and D.G. Row = Feb. 1979 (UCB/EERC~79/08} 10

"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into
for Enhanced Safety: Volume 3 - Evaluation of Commercial Steels," by W.S. Owen,
R.O. Ritchie, M. Faral, T. Ohhashi, J. Toplosky, 3.J. Hartman, V.F. Zackay and
Feb. 1979 (UCB/EERC-79/09) A04

Muclear Power Plants
R.M.N. Pelloux,
E.R, Parker =~

"The Design of Steel Eneryy absorbing Restrainers and Their Incorporation inte
for Enhanced safety: Volume 4 - A& Review of Energy-absorbing Devices," by J.M.
M.$. Skinner - Feb. 1979 (UCB/EERC-79/10)A04

"Conservatism In Summation Rules for Closely Spaced Modes," by J.M. Kelly and J.L. Sackman - May
1979({ps 301 328)A03

Nuclear Power Plants
Kelly and

"Cyclic Loading Tests of Masonry Single Piers; Volume 3 - Height to Width Ratio of 0.5," by
P.A. Hidaigo, R.L. Mayes, H.D. McNiven and R.W. Clough - May 1979(PB 301 321)a08

"Cycli¢ Behavior of Dense Course~Grained Materials in Relation to the Seismic Stability of Dams," by
N.G., Banerjee, H.B. Seed and C.K. Chan - June 1979(PB 301 373)Al3

Seismic Behavior of Reinforced Concrete Interior Beam-Column Subassemblages," by S. Viwathanatepa,
E.P. Popov and V.V. Bertero -~ June 1279(pPB 301 326)Al0

"Optimal Design of Localized Nonlinear Systems with Dual Performance Criteria Under Earthguake
Excitations," by M.A, Bhatti - July 1979(PB 80 187 109)A06

"OPTDYN - A General Purpose Optimization Program for Problems with or without Dynamic Constraints,"
by M.A. Bhatti, E. Polak and K.S. pister - July 1972(pP5 80 167 091)AQS

"ANSR-II, Analysis of Nonlinear Structural Response, Users Manual,” by D.P. Mondkar and G.H. Powell
July 1279 {PB 50 113 301)a05

“Soil Structure Interaction in Different Seismic Environments," A.
and H.B. Seed - August 1979(PB 80 10l 520} A04

Gomgg-Masso, J. Lysmer, J.-C. Chen

"ARMA Models for Earthgjuake Ground Motions,"™ by M.K. Chang, J.W. Kwiatkowski, R.F. Nau, R.M. Qliver
and K.S. Pister - July 1979(PB 301 166) A0S

"Hysteretic RBehavior of Reinforced Concrete Structural Walls," by J.M. Vallenas, V.V, Bertero and
B.DP. Popov - August 1979(PB 80 165 905)Al2

"Studies on High-Frequency Vibrations of Buildings = 1: The Column Effect,” by J. Lubliner - Augustl979
(PE BQ 158 S53)A03

"Effects of Generalized Loadings on Bond Reinforcing Bars Embedded in Confined Concrete Blocks," by
$. Viwathanatepa, E.P. Popov and V.V. Bertero - August 1979(PB 81 124 018)Al4

"Shaking Table
R.L. Mayes and

Study of Single~Story Masonry Houses, Volume 1: Test Structures 1 and 2," by P. Gillkan,
R.W. Clough = Sept. 1979 (HUD-000 1763)Al2

"Shaking Table
R.L. Mayes and

“Shaking Table Study of Single-Story Masonry Houses, Volume 3: Summary, Conclusions and Recommendations,"
by R.W. Clough, R.L. Mayes and P. Gilkan - Sept. 1979 (HUD~G00 1B37)A06

Study ¢of Single-Story Masonry Houses, Volume 2: Test Structures 3 and 4," by P. Gilkan,
R.W. Clough ~ Sept. 1979 (HUD-000 1836)al2
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UCB/EERC-79/26

UCB/EERC-79/27

UCB/EERC-79/28

UCB/EERC-79/29

UCB/EERC-7%/30

UCB/EERC-79/31

UCB/EERC-T79/32
UCB/EERC~79/33

UCB/EERC-79/34

UCB/EERC-80/01

UCB/EBRC-80/02

UCB/EERC-80/03

UCB/EERC=-30/04

UCB/EERC-30/05%

UCB/EERC-380,/06

UCB/EERC-80/07

UCB/EERC~80/08

UCB/EERC~80/09

UCB/EERC-80/10C

UCBR/EERC~80/11

UCB/EERC~8Q/12
UCB/EERC~80/13

UCB/EERC~80/14

UCB/EERC-80/1S
UCB/EERC-80/16

UCB/EERC-80/17

UCB/EERC-80/18

UCB/EERC-80/19

UCB/EERC-80/20

UCB/EERC-80/21

UCB/EERC~80/22

UCB/EERC-80,/23

“Recommendaticons for a U.S.-Japan Cooperative Research Program Utilizing Large-Scale Testing Facilities,"
by U.5.-Japan Planning Group - Sept. 1979(PB 301 407)AQ6E

"Barthquake-Induced Liquefaction Near Lake amatitlan, Guatemala," by H.B, Seed, I. Arango, C.K. Chan,
A. Gomez-Massc and R. Grant de Bscoli - Sept. 1979 (NUREG-CRL341)A03
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