
Design Pattern Implementation in Java and AspectJ
Jan Hannemann

University of British Columbia
201-2366 Main Mall

Vancouver B.C. V6T 1Z4
jan [at] cs.ubc.ca

Gregor Kiczales
University of British Columbia

201-2366 Main Mall
Vancouver B.C. V6T 1Z4

gregor [at] cs.ubc.ca

ABSTRACT
AspectJ implementations of the GoF design patterns show
modularity improvements in 17 of 23 cases. These improvements
are manifested in terms of better code locality, reusability,
composability, and (un)pluggability.

The degree of improvement in implementation modularity varies,
with the greatest improvement coming when the pattern solution
structure involves crosscutting of some form, including one object
playing multiple roles, many objects playing one role, or an object
playing roles in multiple pattern instances.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
patterns, information hiding, and languages; D.3.3
[Programming Languages]: Language Constructs and Features –
patterns, classes and objects

General Terms
Design, Languages.

Keywords
Design patterns, aspect-oriented programming.

1. INTRODUCTION
The Gang-of-Four (GoF) design patterns [9] offer flexible solutions
to common software development problems. Each pattern is
comprised of a number of parts, including purpose/intent,
applicability, solution structure, and sample implementations.
A number of GoF patterns involve crosscutting structures in the
relationship between roles in the pattern and classes in each
instance of the pattern [6]. In the Observer pattern, an operation
that changes any Subject must trigger notifications of its Observers
– in other words the act of notification crosscuts one or more
operations in each Subject in the pattern. In the Chain Of
Responsibility pattern, all Handlers need to be able to accept
requests or events and to either handle them or forward them to the

successor in the chain. The event handling mechanism crosscuts the
Handlers.
When the GoF patterns were first identified, the sample
implementations were geared to the current state of the art in
object-oriented languages. Other work [19, 22] has shown that
implementation language affects pattern implementation, so it seems
natural to explore the effect of aspect-oriented programming
techniques [11] on the implementation of the GoF patterns.
As an initial experiment we chose to develop and compare Java
[27] and AspectJ [25] implementations of the 23 GoF patterns.
AspectJ is a seamless aspect-oriented extension to Java, which
means that programming in AspectJ is effectively programming in
Java plus aspects.
By focusing on the GoF patterns, we are keeping the purpose,
intent, and applicability of 23 well-known patterns, and only allowing
the solution structure and solution implementation to change. So we
are not discovering new patterns, but simply working out how
implementations of the GoF patterns can be handled using a new
implementation tool.
Our results show that using AspectJ improves the implementation of
many GoF patterns. In some cases this is reflected in a new solution
structure with fewer or different participants, in other cases, the
structure remains the same, only the implementation changes.
Patterns assign roles to their participants, for example Subject and
Observer for the Observer pattern. These roles define the
functionality of the participants in the pattern context. We found that
patterns with crosscutting structure between roles and participant
classes see the most improvement.
The improvement comes primarily from modularizing the
implementation of the pattern. This is directly reflected in the
implementation being textually localized. An integral part of
achieving this is to remove code-level dependencies from the
participant classes to the implementation of the pattern.
The implementation of 17 of the patterns is modularized in this way.
For 12 of the patterns, the modularity enables a core part of the
implementation to be abstracted into reusable code. For 14, it
enables transparent composition of pattern instances, so that
multiple patterns can have shared participants. For the 17
modularized patterns, all pattern code from some or all participants
is moved into the pattern aspect, allowing those participants to be
(un)pluggable with respect to the pattern.
These results – 74% of GoF patterns implemented in a more
modular way, and 52% reusable – suggest it would be worthwhile to
undertake the experiments of applying AspectJ to more patterns

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OOPSLA ’02, November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-471-1/02/0011…$5.00.

and/or applying other aspect-oriented techniques to pattern
implementations.
The rest of the paper is organized as follows. Section 2 surveys
previously identified problems in design pattern implementation.
Section 3 introduces the study format. In section 4, we present our
AspectJ implementations and categorize the improvements we
observed. Section 5 shows an analysis of our findings and
observations. Related work is discussed in section 6, and Section 7
summarizes our work.

2. ESTABLISHED CHALLENGES
Numerous authors have identified challenges that arise when
patterns are concretized in a particular software system. The three
most important challenges are related to implementation,
documentation, and composition.
Design pattern implementation usually has a number of undesirable
related effects. Because patterns influence the system structure and
their implementations are influenced by it [7], pattern
implementations are often tailored to the instance of use. This can
lead to them “disappearing into the code” [7] and losing their
modularity [21]. This makes it hard to distinguish between the
pattern, the concrete instance and the object model involved [15].
Adding or removing a pattern to/from a system is often an invasive,
difficult to reverse change [4]. Consequently, while the design
pattern is reusable, its implementations usually are not [21].
The invasive nature of pattern code, and its scattering and tangling
with other code creates documentation problems [21]. If multiple
patterns are used in a system, it can become difficult to trace
particular instances of a design pattern, especially if classes are
involved in more than one pattern (i.e. if there is pattern
overlay/composition) [1].
Pattern composition causes more than just documentation problems.
It is inherently difficult to reason about systems with multiple
patterns involving the same classes, because the composition
creates large clusters of mutually dependent classes [21]. This is an
important topic because some design patterns explicitly use others
patterns in their solution.

3. STUDY FORMAT
The findings presented in this paper are based on a comparative
analysis of Java and AspectJ implementations of the GoF design
patterns.
For each of the 23 GoF patterns we created a small example that
makes use of the pattern, and implemented the example in both Java
and AspectJ.1 The Java implementations correspond to the sample
C++ implementations in the GoF book, with minor adjustments to
account for the differences between C++ and Java (lack of multiple
inheritance, etc.). Most patterns have a number of implementation
variants and alternatives. If a pattern offered more than one
possible implementation, we picked the one that appeared to be the
most generally applicable.
The AspectJ implementations were developed iteratively. The
AspectJ constructs allowed a number of different implementations,

1 The code is available for download at:

http://www.cs.ubc.ca/labs/spl/projects/aodps.html

usually with varying tradeoffs. Our goal was to fully investigate the
design space of clearly defined implementations of each pattern.
We ended up creating a total of 57 different implementations, which
ranged from 1 to 7 per pattern. Some of the tradeoffs and design
decisions are discussed in Section 4.

4. RESULTS
This section presents a comparison of the AspectJ and Java
implementations of concrete instances of the GoF design patterns.
Section 4.1 is a detailed discussion of the Observer pattern. We use
this discussion to present properties common to most of the AspectJ
solutions. The remaining patterns are presented by building on the
concepts developed in Section 4.1.

4.1 Example: the Observer pattern
The intent of the Observer pattern is to “define a one-to-many
dependency between objects so that when one object changes state,
all its dependents are notified and updated automatically”[9].
Object-oriented implementations of the Observer pattern, such as
the sample code in the GoF book (p. 300-303), usually add a field to
all potential Subjects that stores a list of Observers interested in that
particular Subject. When a Subject wants to report a state change to
its Observers, it calls its own notify method, which in turn calls
an update method on all Observers in the list.
Consider a concrete example of the Observer pattern in the context
of a simple figure package, as shown in Figure 1. In such a system
the Observer pattern would be used to cause mutating operations to

FigureElement

addObserver(Observer)
removeObserver(Observer)
notify()

Point: Subject

getX():int
getY():int
getColor():Color
addObserver(Observer)
removeObserver(Observer)
notify()
setX(int)
setY(int)
setColor(Color)

Line: Subject

getP1():Point
getP2():Point
getColor():Color
addObserver(Observer)
removeObserver(Observer)
notify()
setP1(Point)
setP2(Point)
setColor(Color)

Figure

Screen: Observer

update()
display(String)

*1
FigureElement

addObserver(Observer)
removeObserver(Observer)
notify()

Point: Subject

getX():int
getY():int
getColor():Color
addObserver(Observer)
removeObserver(Observer)
notify()
setX(int)
setY(int)
setColor(Color)

Line: Subject

getP1():Point
getP2():Point
getColor():Color
addObserver(Observer)
removeObserver(Observer)
notify()
setP1(Point)
setP2(Point)
setColor(Color)

Figure

Screen: Observer

update()
display(String)

*1

Figure 1. A simple Graphical Figure Element System that

uses the Observer pattern in Java. The underlined methods
contain code necessary to implement this instance of the

Observer pattern.

figure elements to update the screen. As shown in the figure, code
for implementing this pattern is spread across the classes.
All participants (i.e. Point and Line) have to know about their
role in the pattern and consequently have pattern code in them.
Adding or removing a role from a class requires changes in that
class. Changing the notification mechanism (such as switching
between push and pull models [9]) requires changes in all
participating classes.

4.1.1 The abstracted Observer pattern
In the structure of the Observer pattern, some parts are common to
all potential instantiations of the pattern, and other parts are specific
to each instantiation. The parts common to all instantiations are:

1. The existence of Subject and Observer roles (i.e. the fact
that some classes act as Observer and some as Subject).

2. Maintenance of a mapping from Subjects to Observers.
3. The general update logic: Subject changes trigger

Observer updates.
The parts specific to each instantiation of the pattern are:

4. Which classes can be Subjects and which can be
Observers.

5. A set of changes of interest on the Subjects that trigger
updates on the Observers

6. The specific means of updating each kind of Observer
when the update logic requires it.

We developed AspectJ code that reflects this separation of reusable
and instance-specific parts. An abstract aspect encapsulates the
generalizable parts (1-3), while one concrete extension of the aspect
for each instance of the pattern fills in the specific parts (4-6). The
reusable ObserverProtocol aspect is shown in Figure 2.

4.1.1.1 The roles of Subject and Observer
The roles are realized as protected inner interfaces named
Subject and Observer (Figure 2, line 3-4). Their main purpose
is to allow for correct typing of Subjects and Observers in the
context of the pattern implementation, such as in methods like
addObserver. Concrete extensions of the
ObserverProtocol aspect assign the roles to particular classes
(see below).
These interfaces are protected because they will only be used by
ObserverProtocol and its concrete extensions. No code
outside the aspect and extensions needs to handle objects in terms
of these roles.
These interfaces are empty because the pattern defines no methods
on the Subject or Observer roles. The methods that would typically
be defined on the Subject and Observer are instead defined on the
aspect itself (see below).
For patterns that were abstractable we had to decide where to put
the role interfaces. Two locations are possible: Either as a private
interface inside the abstract aspect or as a separate public interface.
We made this decision based on whether the role interface
introduces client-accessed functionality, i.e. exposes functionality to
clients (as for Strategy, Iterator, etc.) or not (as in the Observer
case). If the role has no client-accessible functionality, it will only be
referenced from within pattern aspects. For that reason, we placed

it in the abstract aspect. In the other case, we moved the interface
into a separate file to make it easier to reference.

4.1.1.2 The Subject-Observer mapping
Implementation of the mapping in the AspectJ code is localized to
the ObserverProtocol aspect. It is realized using a weak hash
map of linked lists to store the Observers for each Subject (line 6).
As each pattern instance is represented by a concrete subaspect2 of
ObserverProtocol, each instance will have its own mapping.
Changes to the Subject-Observer mappings can be realized via the
public addObserver and removeObserver methods (line 21-
26) that concrete subaspects inherit. To have a Screen object S
become the Observer of a Point Subject P, clients call these
methods on the appropriate subaspect (e.g. ColorObserver):
 ColorObserving.aspectOf().addObserver(P, S);

The private getObservers method is only used internally. It
creates the proper secondary data structures (linked lists) on
demand (line 8-19). Note that in this implementation the Subject-
Observer mapping data structure is centralized in each concrete
extension. All concrete aspects that subclass the abstract pattern

2 A subaspect is the concrete extension of an abstract aspect, the

concept being similar to subclasses in OO languages

01 public abstract aspect ObserverProtocol {
02
03 protected interface Subject { }
04 protected interface Observer { }
05
06 private WeakHashMap perSubjectObservers;07
08 protected List getObservers(Subject s) {
09 if (perSubjectObservers == null) {
10 perSubjectObservers = new WeakHashMap();
11 }
12 List observers =
13 (List)perSubjectObservers.get(s);
14 if (observers == null) {
15 observers = new LinkedList();
16 perSubjectObservers.put(s, observers);
17 }
18 return observers;
19 }
20
21 public void addObserver(Subject s,Observer o){
22 getObservers(s).add(o);
23 }
24 public void removeObserver(Subject s,Observer o){
25 getObservers(s).remove(o);
26 }
27
28 abstract protected pointcut
29 subjectChange(Subject s);
30
31 abstract protected void
32 updateObserver(Subject s, Observer o);
33
34 after(Subject s): subjectChange(s) {
35 Iterator iter = getObservers(s).iterator();
36 while (iter.hasNext()) {
37 updateObserver(s, ((Observer)iter.next()));
38 }
39 }
40 }

Figure 2: The generalized ObserverProtocol aspect

aspect will automatically have an individual copy of the field. This
follows the structure presented in [9]. This can cause a bottleneck
in some situations. These can be fixed, on a per pattern-instance
basis, by overriding getObservers with a method that uses a
more decentralized data structure.
Generally, whenever a pattern solution requires a mapping between
participants (i.e. the successor field of handlers in Chain Of
Responsibility) and the pattern implementation is abstractable, we
can either define a field on the participant, or keep the mapping in a
central data structure in the abstract aspect (as in this example).
Whichever approach is chosen, the point of access to the data
structure is the instance-specific aspect, so that different instances
of the pattern involving the same participants are possible and will
not become confused.

4.1.1.3 The update logic
In the reusable aspect, the update logic implements the general
concept that Subjects can change in ways that require all their
observers to be updated. This implementation does not define
exactly what constitutes a change, or how Observers should be
updated. The general update logic consists of three parts:
The changes of interest depict conceptual operations, a set of
points in program execution, at which a Subject should update its
Observers (to notify them of changes to its state). In AspectJ, sets
of such points are identified with pointcut constructs. In the reusable
aspect, we only know there are modifications of interest, but we do
not know what they are. Therefore, we define an abstract pointcut
named subjectChange that is to be concretized by instance-
specific subaspects (line 28-29).
In the reusable part we only know that the Observers will have to
be updated in the context of the pattern, but cannot predict how that
is best achieved. We define an abstract update method
updateObserver that will be concretized for each pattern
instance (line 31-32). That way, each instance of the Observer
pattern can choose its own update mechanism.
Finally, the reusable aspect implements the update logic in terms of
the generalizable implementation parts mentioned above. This logic
is contained in the after advice (line 34-39). This after advice says:
whenever execution reaches a join point matched by the

subjectChange pointcut, update all Observers of the
appropriate Subject afterwards.

4.1.2 Pattern-instance-specific concrete aspects
Each concrete subaspect of ObserverProtocol defines one
particular kind of observing relationship, in other words a single
pattern instance. Within that kind of relationship, there can be any
number of Subjects, each with any number of Observers. The
subaspect defines three things:

• The classes that play the roles of Subjects and Observers.
This is done using the declare parents construct,
which adds superclasses or super-interfaces to a class, to
assign the roles defined in the abstract aspect.

• The conceptual operations on the subject that require
updating the Observers. This is done by concretizing the
subjectChange pointcut.

• How to update the observers. This is done by concretizing
updateObserver. The choice between push or pull
model for updates is no longer necessary as we have
access to both the Subject and the Observer at this point
and can customize the updates.

The declare parents construct is part of the AspectJ open
class mechanism that allows aspects to modify existing classes
without changing their code. This open class mechanism can attach
fields, methods, or – as in this case – interfaces to existing classes.
Figure 3 shows two different instances of the Observer pattern
involving the classes Point, Line, and Screen. In both
instances, Point and Line play the role of Subject, and Screen
plays the role of Observer. The first observes color changes, and
the second observes coordinate changes.
Note that the type casts in line 13 and 31 are expected disappear
with the planned AspectJ support for generics. It will then be
possible to create parameterized subaspects that incorporate the
role assignment and are type safe.
Particular classes can play one or both of the Subject and Observer
roles, either in the same pattern instance or separate pattern
instances. Figure 4 shows a third pattern instance in which Screen
acts as Subject and Observer at the same time.

01 public aspect ColorObserver extends ObserverProtocol { 16 public aspect CoordinateObserver extends
02 17 ObserverProtocol {
03 declare parents: Point implements Subject; 18
04 declare parents: Line implements Subject; 19 declare parents: Point implements Subject;
05 declare parents: Screen implements Observer; 20 declare parents: Line implements Subject;
06 21 declare parents: Screen implements Observer;
07 protected pointcut subjectChange(Subject s): 22
08 (call(void Point.setColor(Color)) || 23 protected pointcut subjectChange(Subject s):
09 call(void Line.setColor(Color))) && target(s); 24 (call(void Point.setX(int))
10 25 || call(void Point.setY(int))
11 protected void updateObserver(Subject s, 26 || call(void Line.setP1(Point))
12 Observer o) { 27 || call(void Line.setP2(Point))) && target(s);
13 ((Screen)o).display("Color change."); 28
14 } 29 protected void updateObserver(Subject s,
15 } 30 Observer o) {
 31 ((Screen)o).display("Coordinate change.");
 32 }
 33 }

Figure 3. Two different Observer instances.

In the AspectJ version all code pertaining to the relationship
between Observers and Subjects is moved into an aspect, which
changes the dependencies between the modules. Figure 5 shows the
structure for this case.

4.1.3 Properties of this implementation
This implementation of the Observer pattern has the following
closely related modularity properties:

• Locality – All the code that implements the Observer
pattern is in the abstract and concrete observer aspects,
none of it is in the participant classes. The participant
classes are entirely free of the pattern context, and as a
consequence there is no coupling between the
participants. Potential changes to each Observer pattern
instance are confined to one place.

• Reusability – The core pattern code is abstracted and
reusable. The implementation of ObserverProtocol is
generalizing the overall pattern behavior. The abstract
aspect can be reused and shared across multiple
Observer pattern instances. For each pattern instance, we
only need to define one concrete aspect.

• Composition transparency – Because a pattern
participant’s implementation is not coupled to the pattern,
if a Subject or Observer takes part in multiple observing
relationships their code does not become more
complicated and the pattern instances are not confused.
Each instance of the pattern can be reasoned about
independently.

• (Un)pluggability – Because Subjects and Observers
need not be aware of their role in any pattern instance, it
is possible to switch between using a pattern and not
using it in the system.

4.2 Other patterns
In the following we describe the remaining 22 GoF patterns and
how the AspectJ implementation is different from a pure Java
version. The patterns are grouped by common features, either of the
pattern structures or their AspectJ implementations.

4.2.1 Composite, Command, Mediator, Chain of
Responsibility: roles only used within pattern aspect
Similar to the Observer pattern, these patterns introduce roles that
need no client-accessible interface and are only used within the
pattern. In AspectJ such roles are realized with empty (protected)

interfaces. The types they introduce are used within the pattern
protocol. One abstract aspect for each pattern defines the roles and
attaches default implementations where possible (see Figure 6 for
parts of the abstract Composition aspect).
For patterns involving particular conceptual operations, the abstract
pattern aspect introduces an abstract pointcut (to be concretized for
each instance of the pattern), which captures the join points that
should trigger important events (such as the execution of a
Command in the Command pattern). As in the Observer example,
advice (after, before, or around) is responsible for calling the
appropriate methods.
In the Composite case, to allow walking the tree structure inherent
to the patterns, we define facilities to have a visitor traverse and/or
change the structure. These visitors are defined in the concrete
aspect. See Figure 7 for an example of how statistics can be
collected from the Composition structure. In this example we show
an instance of the Composite pattern modeling a file system.
Directories are Composites, and files are Leafs. The example
shows how to calculate the disk space needed for the file system,
assuming that File objects have a size field. Again, clients use a
public method on the aspect to access the new functionality.
Appropriate methods on the participants are introduced privately
and are visible only by the aspect.3

4.2.2 Singleton, Prototype, Memento, Iterator,
Flyweight: aspects as object factories
These patterns administrate access to specific object instances. All
of them offer factory methods to clients and share a create-on-
demand strategy. The patterns are abstracted (reusable) in AspectJ,
with code for the factory in the aspect.
In the AspectJ implementations, the factory methods are either
parameterized methods on the abstract aspect or methods attached
to the participants. If the former approach is used, multiple instances
of the pattern compose transparently, even if all factory methods
have the same names. The Singleton case is special in that we can

3 Due to a bug in AspectJ release 1.0.6 the private abstract

introduction of Component.sizeOnDisk() does not work.
This is scheduled to be fixed in the next release.

01 public aspect ScreenObserver
02 extends ObserverProtocol {
03
04 declare parents: Screen implements Subject;
05 declare parents: Screen implements Observer;
06
07 protected pointcut subjectChange(Subject s):
08 call(void Screen.display(String)) && target(s);
09
10 protected void updateObserver(
11 Subject s, Observer o) {
12 ((Screen)o).display("Screen updated.");
13 }
14 }

Figure 4. The same class can be Subject and Observer

Point Line Display

ColorObserver
Subject Observer

subjectChange

Point Line Display

ColorObserver
Subject Observer

subjectChange

Figure 5: The structure of an instance of the Observer

pattern in AspectJ. Subject and Observer roles crosscut
classes, and the changes of interest (the subjectChange

pointcut) crosscuts methods in various classes.

turn the original constructor into the factory method using around
advice and returning the unique object on all constructor calls.
Parameterized factory methods can alternatively be implemented
according to Nordberg’s factory example [18]: the factory method
is empty (returns null or a default object). Other return values are
provided by around advice on that method. If the arguments are
appropriate, the advice creates a new matching object; otherwise it
just proceeds with the regular execution. This allows us extend the
factory (in terms of new products) without changing its code.
Participants no longer need to have pattern code in them; the
otherwise close coupling between an original object and its
representation or accessor (Memento, Iterator) is removed from the
participants.

4.2.3 Adapter, Decorator, Strategy, Visitor, Proxy:
language constructs
Using AspectJ, the implementation of some patterns completely
disappears, because AspectJ language constructs implement them
directly. This applies to these patterns in varying degrees.
The Adapter and Visitor pattern can be realized by extending the
interface of the Adaptee (via AspectJ’s open class mechanism).
Decorator, Strategy and Proxy have alternate implementations
based on attaching advice (mentioned for Decorator in [18]).
While simpler and more modular, the approaches have inherent
limitations. The advice-based implementation of Decorator loses its
dynamic manipulation properties (dynamic reordering of
Decorators) and is thus less flexible. The interface augmentation for
Adapter cannot be realized in this manner when we want to
replace an existing method with another one that has the same
name and arguments but a different return type.
Protection or delegation proxies can be implemented to be reusable
using the above approach, but some applications of the Proxy
pattern require the Proxy and the Subject to be two distinct objects
(such as remote and virtual proxy). In these cases the Java and
AspectJ implementations are identical.

4.2.4 Abstract Factory, Factory Method, Template
Method, Builder, Bridge: multiple inheritance
These patterns are structurally similar: Inheritance is used to
distinguish different but related implementations. As this is already
nicely realized in OO, these patterns could not be given more
reusable implementations. However, with AspectJ it is possible to
replace the abstract classes mentioned in the GoF solution by
interfaces without losing the ability to attach (default)
implementations to their methods. With Java, we cannot use
interfaces if we want to define a default implementation for
methods that are part of the pattern code. In that respect, AspectJ’s

public abstract aspect CompositionProtocol {

 protected interface Component {}
 protected interface Composite extends Component {}
 protected interface Leaf extends Component {}

 private WeakHashMap perComponentChildren =
 new WeakHashMap();

 private Vector getChildren(Component s) {
 Vector children;
 children = (Vector)perComponentChildren.get(s);
 if (children == null) {
 children = new Vector();
 perComponentChildren.put(s, children);
 }
 return children;
 }

 public void addChild(Composite composite,
 Component component) {
 getChildren(composite).add(component);
 }
 public void removeChild(Composite composite,
 Component component) {
 getChildren(composite).remove(component);
 }

 public Enumeration getAllChildren(Component c) {
 return getChildren(c).elements();
 }

 protected interface FunctionVisitor {
 public Object doIt(Component c);
 }

 protected static Enumeration
 recurseFunction(Component c,
 FunctionVisitor fv) {
 Vector results = new Vector();
 for (Enumeration enum = getAllChildren(c);
 enum.hasMoreElements();) {
 Component child;
 child = (Component)enum.nextElement();
 results.add(fv.doIt(child));
 }
 return results.elements();
 }
}

Figure 6. Part of the abstract Composite pattern
implementation

public aspect FileSystemComposite extends
 CompositeProtocol {

 declare parents: Directory implements Composite;
 declare parents: File implements Leaf;

 public int sizeOnDisk(Component c) {
 return c.sizeOnDisk();
 }

 private abstract int Component.sizeOnDisk();

 private int Directory.sizeOnDisk() {

int diskSize = 0;
java.util.Enumeration enum;
for (enum =
 SampleComposite.aspectOf().getAllChildren(this);
 enum.hasMoreElements();) {
 diskSize +=
 ((Component)enum.nextElement()).sizeOnDisk();
}
return diskSize;

 }

 private int File.sizeOnDisk() {
 return size;
 }
} }

Figure 7. Part of a Composition pattern instance aspect

open class mechanism effectively provides a limited form of multiple
inheritance.

Besides that, Builder and Bridge have the following additional
implementation considerations. For Builder, an aspect can intercept
calls to the creation methods and replace them with alternate
implementations using around advice (see Strategy above). For
Bridge, a decoupling of Abstraction and Implementor can be
achieved by using polymorphic advice as suggested by Nordberg
[24]. While this approach reduces the coupling between the
participants, it is less flexible when it comes to dynamically changing
Implementors.

4.2.5 State, Interpreter: scattered code modularized
These patterns introduce tight coupling between their participants.
In the AspectJ implementations, parts of the scattered code can be
modularized.
In the State pattern, the crosscutting code for state transitions can
be modularized in an aspect using (mainly) after advice. For
Interpreter, it is still possible to augment or change the behavior of
the system without changing all participant classes. This can be
accomplished by attaching methods to the participants using the
open class mechanism.

4.2.6 Façade: no benefit from AspectJ
implementation
For this pattern, the AspectJ approach is not structurally different
from the Java implementation. Façade provides a unified interface
to a set of interfaces to a subsystem, to make the subsystem easier
to use. This example mainly requires namespace management and
good coding style.

5. ANALYSIS
In this section, we present an analysis of the previously observed
benefits of implementing patterns with AspectJ. The analysis is
broken into three parts:

• The general improvements observed in many pattern re-
implementations.

• The specific improvements associated with particular
patterns.

• The origins of crosscutting structure in patterns, and a
demonstration that observed improvements correlate with
the presence of crosscutting structure in the pattern.

5.1 General Improvements
For a number of patterns, the AspectJ implementations manifest
several closely related modularity benefits: locality, reusability,
dependency inversion, transparent composability, and
(un)pluggability. Attempting to say which of these is primary is
difficult, instead we simply describe them and discuss some of their
interrelationships.
The AspectJ implementations of 17 of the 23 GoF patterns were
localized. For 12 of these, the locality enables a core part of the
implementation to be abstracted into reusable code. In 14 of the 17
we observed transparent composability of pattern instances, so that
multiple patterns can have shared participants (see Table 1).
The improvements in the AspectJ implementations are primarily due
to inverting dependencies, so that pattern code depends on

participants, not the other way around. This is directly related to
locality – all dependencies between patterns and participants are
localized in the pattern code.
An object or class that is oblivious of its role in a pattern can be
used in different contexts (such as outside the pattern) without
modifications or redundant code, thereby increasing the reusability
of participants. If participants do not need to have pattern-specific
code, they can be readily removed from or added to a particular
pattern instance, making the participants (un)pluggable. To benefit
from this, the participants must have a meaning outside the pattern
implementation. For example, the participants in a Chain Of
Responsibility pattern often have other responsibilities in the
application they are in (as widgets in the GUI example in GoF),
while Strategy objects usually just encapsulate an algorithm.
The locality also means that existing classes can be incorporated
into a pattern instance without the need to adapt them; all the
changes are made in the pattern instance. This makes the pattern
implementations themselves relatively (un)pluggable.
Pattern locality should also allow a developer to easily impose global
policies related to the design patterns, such as adding thread safety,
logging facilities or performance optimizations.
In essence, we observe typical advantages generally associated
with localized concerns with regards to future changes and program
evolution. In particular, the problematic case of pattern
composition/overlay [1, 7, 15, 21] becomes better structured (and
easier to reason about) when pattern instances are defined in
separate modular units.
In addition to code-level benefits, the modularity of the design
pattern implementation also results in an inherent documentation
benefit. As mentioned in [1, 21], the mere existence of classes that
exclusively contain pattern code serve as records of what patterns
are being used. In the AspectJ cases, we observe two additional
improvements. First, all code related to a particular pattern instance
is contained in a single module (which defines participants, assigns
roles, etc.). This means that the entire description of a pattern
instance is localized and does not “get lost” [21] or “degenerate” [7]
in the system. Secondly, with the current AspectJ IDE support, all
references, advised methods etc. are hyperlinks that allow a
developer an overview of the assignment of roles and where the
conceptual operations of interest are.
In 12 cases we were able to develop reusable pattern
implementations. This happened by generalizing the roles, pattern
code, communication protocols, and relevant conceptual operations
in an abstract reusable aspect. For any concrete instance of the
pattern, the developer defines the participants (assigns roles) and
fills in instance-specific code. Changes to communication protocols
or methods that are part of the abstract classes or interfaces
involved do not require adjusting all participants.
If we can reuse generalized pattern code and localize the code for a
particular pattern instance, multiple instances of the same pattern in
one application are not easily confused (composition transparency).
The same participating object or class can even assume different
roles in different instances of the same pattern (see the Observer
example above). This solves a common problem with having
multiple instances of a design pattern in one application.

5.2 Specific improvements
5.2.1 The Singleton case
The AspectJ version of the pattern implementation opened up two
design options that are not possible in Java: First, is Singleton an
inherited property, or do we have an inheritance anomaly? Second,
do we want a devoted factory method to provide the Singleton
instance, or do we want the constructor to return it whenever it is
called?

We decided to implement the Singleton property as inherited, but
provided facilities to exclude specific subclasses from the Singleton
protection if desired.
For the second, we decided that using the constructor instead of a
devoted factory method was beneficial. The factory, if desired, can
then be implemented either directly in the class, or as a
transparently composed aspect.

5.2.2 Multiple inheritance and Java
As originally presented, some of the GoF patterns make use of
multiple-inheritance in their implementation, for example the class

Table 1. Design pattern, roles, and desirable properties of their AspectJ implementations

 Modularity Properties Kinds of Roles

Pattern Name Locality(**) Reusability
Composition

Transparency (Un)pluggability Defining(*) Superimposed

Façade Same implementation for Java and AspectJ Façade -

Abstract Factory no no no no Factory, Product -

Bridge no no no no Abstraction, Implementor -

Builder no no no no Builder, (Director) -

Factory Method no no no no Product, Creator -

Interpreter no no n/a no Context, Expression -

Template Method (yes) no no (yes)
(AbstractClass),
(ConcreteClass)

(AbstractClass),
(ConcreteClass)

Adapter yes no yes yes Target, Adapter Adaptee

State (yes) no n/a (yes) State Context

Decorator yes no yes yes Component, Decorator ConcreteComponent

Proxy (yes) no (yes) (yes) (Proxy) (Proxy)

Visitor (yes) yes yes (yes) Visitor Element

Command (yes) yes yes yes
Command Commanding, Receiver

Composite yes yes yes (yes) (Component) (Composite, Leaf)

Iterator yes yes yes yes (Iterator) Aggregate

Flyweight yes yes yes yes FlyweightFactory Flyweight

Memento yes yes yes yes Memento Originator

Strategy yes yes yes yes Strategy Context

Mediator yes yes yes yes - (Mediator), Colleague

Chain of Responsibility yes yes yes yes - Handler
Prototype yes yes (yes) yes - Prototype
Singleton yes yes n/a yes - Singleton
Observer yes yes yes yes - Subject, Observer
 (*) The distinctions between defining and superimposed roles for the different patterns were not always easy to make. In some cases, roles are
clearly superimposed (e.g. the Subject role in Observer), or defining (e.g. State in the State pattern). If the distinction was not totally clear, the role
names are shown in parentheses in either or both categories.

(**) Locality: “(yes)” means that the pattern is localized in terms of its superimposed roles but the implementation of the remaining defining role is
still done using multiple classes (e.g. State classes for the State pattern). In general, (yes) for a desirable property means that some restrictions apply

version of the Adapter pattern. For many patterns, the roles that
participants play within the patterns are realized as abstract classes
in Java. Participant classes inherit interfaces and default
implementations from these abstract classes. But if the participant
classes have functionality outside the pattern context (such as GUI
widgets as Subjects or Observers in the Observer pattern), they are
usually already part of an inheritance hierarchy. Since Java lacks
multiple inheritance, implementation in these cases can be
somewhat awkward: In Java, if a participant has to inherit both its
role and its other functionality, then one of the supertypes has to be
realized as an interface. Unfortunately, interfaces in Java cannot
contain code, making it impossible to attach default implementations
of methods, for example.

The open class mechanism in AspectJ provides us with a more
flexible way of implementing these patterns, as it allows to attach
both interfaces and implementations (code) to existing classes.

5.2.3 Breaking cyclic dependencies
Some design patterns regulate complex interactions between sets of
objects. In object-oriented implementations these classes are tightly
coupled and mutually dependent. One example of a design pattern
that introduces cyclic dependencies is Mediator, a variation of the
Observer pattern that is often used in UI programming. Here,
changes to Colleagues (e.g. widgets) trigger updates in the Mediator
object (e.g. director). The Mediator, on the other hand, might update
some or all of the Colleagues as a reaction to this.
A typical structure for this pattern is shown in Figure 8 (left).
Inheritance relationships (the Mediator and Colleague interface) are
not shown. The pattern introduces cyclic dependencies between
Mediator and Colleagues (denoted by arrows pointing in opposite
direction). The pattern code (for updates etc.) is distributed both
over Mediator and all Colleagues.
In the AspectJ implementation (Figure 8, right), the indirection
introduced by the ConcreteMediator aspect removes the cyclic
dependencies. The aspect defines the participants, assigns the roles
and identifies which points in the execution trigger updates.
Colleagues do not have to have any pattern-related code in them,
they are “freed” of the pattern. Changes to the pattern (for
example, the notification interface) are limited to a single module

(the aspect). Again, an abstract aspect (here: MediatorProtocol)
implements generalizable parts of the pattern.

5.3 Crosscutting structure of design patterns
This section presents the origins of crosscutting structure in the
patterns and shows that the observed benefits of using AspectJ in
pattern implementation correlate with crosscutting in the pattern.
Roles define the behavior and functionality of participants in a
pattern. Examples of such roles are Component, Leaf and
Composite for the Composite pattern, Subject and Observer for the
Observer pattern, or Abstract- and ConcreteFactory for the
Abstract Factory pattern. Crosscutting in pattern structure is caused
by different kinds of roles and their interaction with participant
classes.
In some patterns, the roles are defining: the participants have no
functionality outside the pattern. That is, the roles define the
participants completely. Objects that play the Façade role, for
example, provide a unified interface to a subsystem and (usually)
have no other behavior of their own. Defining roles often include a
client-accessible interface.
In other patterns, the roles are superimposed: they are assigned to
classes that have functionality and responsibility outside the pattern.
In the Observer pattern for example, the classes that play Subject
and Observer do more than just fulfilling the pattern requirements.
In a GUI context, Subjects could be widgets, for example. In other
words, classes that have behavior outside the Observer pattern
context. The Subject role is thus only an augmentation of the
already existing class. Superimposed roles usually do not have a
client-accessible interface.
In object-oriented programming, defining roles are often realized by
subclassing an abstract superclass to achieve different but related
behaviors; superimposed roles are often interfaces that define
behavior and responsibilities.4

4 There is a misalignment in Java in that methods on a superimposed

role may only be intended for use by the pattern, but they have to
be defined on an interface, which require they be public.

ConcreteMediator
(code)

Colleague_1
(code)

Colleague_2
(code)

Colleague_3
(code)

Colleague_4
(code)

Colleague_1

Colleague_3

Colleague_3

Colleague_4

MediatorPattern
(code)

ConcreteMediator
(code)

ConcreteMediator
(code)

Colleague_1
(code)

Colleague_2
(code)

Colleague_3
(code)

Colleague_4
(code)

Colleague_1

Colleague_3

Colleague_3

Colleague_4

MediatorPattern
(code)

ConcreteMediator
(code)

Figure 8: Dependencies and (pattern) code distribution in a typical instance of the Mediator pattern for Java (left) and AspectJ

(right) implementations. The AspectJ implementation removes cyclic dependencies and localizes the pattern code.

5.3.1 Roles and crosscutting
Superimposed roles lead to three different kinds of crosscutting
among patterns and participants:

• Roles can crosscut participant classes. That is, for 1 role,
there can be n classes, and 1 class can have n roles; i.e.
the Subject role as shown in Figure 5.

• Conceptual operations of interest can crosscut methods in
one or more classes. That is, for one conceptual operation
there can be n methods, and 1 method can be in n
conceptual operations; i.e. the subjectChange
operations triggering an Observer update as shown in
Figure 5.

• Roles from multiple patterns can crosscut each other with
respect to classes and/or methods. That is, 2 classes that
pattern A sees as part of 1 role, pattern B may see as in
more than 1 role, and vice versa. The same is true for
conceptual operations; i.e. Subject role and
subjectChange operations as shown in Figure 9.

Table 1 shows that the types of roles a pattern introduces and the
observed benefits of an AspectJ implementation correlate. The
design patterns can be divided into three groups: those with only
defining roles, those with both kinds of roles and those with only
superimposed roles. The table shows that while the AspectJ
implementations of the patterns in first group show no
improvements, patterns from the last group show improvements in
all modularity benefit categories we identified. For patterns that
have both kinds of roles, the results are dependent on the particular
pattern.
Given that AspectJ is intended to modularize crosscutting structure,
this result should not be surprising. It says that patterns that involve
primarily crosscutting structure are well modularized in an AspectJ
implementation. (Note that AspectJ does not remove the
crosscutting of the pattern, but rather provides mechanisms to
modularize that structure.)

5.3.2 A predictive model?
The tight correlation between pattern roles, the crosscutting a
pattern introduces, and the observed benefits of an AspectJ
implementation suggest a predictive model of the benefit from
AspectJ implementation of a given design pattern.

With defining roles, each unit of abstraction (class) represents a
single concept, i.e. the functionality of a class corresponds to its role
in the pattern. Inheritance is used to distinguish between related but
different implementations. In such a case, transparency and
pluggability are not useful properties, as each participant is
inherently useful only within one particular pattern instance.
With superimposed behavior, the situation is different. Participants
have their own responsibilities and justification outside the pattern
context. If we force one such class into the pattern context, we
have – at the very least – two concerns represented by one module
of abstraction (class): The original functionality and the pattern-
specific behavior. The resulting tangling and oftentimes code
duplication can cause problems as the modularity is compromised.
For these patterns and their implementations, a clean modularization
of the pattern functionality and the original functionalities of the
participants is desirable. In an AspectJ implementation it is usually
possible to modularize the abstracted pattern behavior and have one
aspect per pattern instance assign roles, conceptual operations, and
fill in instance-specific code. Since the participants do have a
meaning outside the pattern context, they are not inherently
restricted to a single role or even a single pattern instance.
This model appears to be accurate for those GoF patterns that have
only defining or only superimposed roles. For others, the expected
benefits seem to depend on the number of participants implementing
a particular kind of role. Superimposed roles that map to multiple
participants (e.g. Element in Visitor, Composite or Leaf in
Composite) indicate potential for modularization, even if the pattern
also includes defining roles.

6. RELATED WORK
There is a lot of related work focusing either on patterns beyond the
GoF patterns, or on issues beyond those in this paper. Note that
since our work focuses on the implementation of existing design
patterns, we do not mention publications dealing with finding new
patterns. In particular, related work has been done to:

1. Investigate pattern applicability in other language
paradigms

2. Automate code generation for patterns, to create a design
patterns code library, or to develop tool support for
program design with patterns

Point Line Display

ColorObserver

Subject Observer
subjectChange

ColorDisplayObserver

Subject Observer

Point Line Display

ColorObserver

Subject Observer

ColorDisplayObserver

Subject Observer
subjectChange

Point Line Display

ColorObserver

Subject Observer
subjectChange

ColorDisplayObserver

Subject Observer

Point Line Display

ColorObserver

Subject Observer

ColorDisplayObserver

Subject Observer
subjectChange

Figure 9: Crosscutting caused by pattern composition. In particular, this figure shows how pattern composition introduces

additional crosscutting by extending Figure 5 with a second pattern instance. The left illus trates how a class can play multiple
roles, while the right shows how mapping points in program execution onto the code crosscuts the participant’s methods.

3. Classify existing patterns in order to reduce the number of
distinct patterns or to pinpoint inherent relationships
between them

4. Address the problem of design pattern composition
5. Enhance the representation of design patterns

6.1 Design patterns and language paradigms
Work in this area is directly related to this paper: We investigate
design pattern implementations in AspectJ (AOP) and compare it to
implementations in Java (OO).
Norvig’s work on design patterns in dynamic programming [19]
explores impacts on the GoF design patterns when implemented in
Lisp and/or Dylan. This work is another indicator that patterns
depend on the language paradigm. Of the 23 patterns, he found that
16 either become either invisible or simpler due to first-class types,
first-class functions, macros, method combination, multimethods, or
modules.
Sullivan investigated the impact of a dynamic, higher-order OO
language (Scheme with a library of functions and macros to provide
OO facilities) on design pattern implementations [22]. In-line with
Norvig’s work, he observed that some design pattern
implementations disappear (if language constructs capture them),
some stay virtually unchanged and some become simpler or have
different focus.
Nordberg describes how AOP and component-based development
can help in software module dependency management [17]. In a
different work, he views design pattern improvements from the
point of view of indirections and shows how replacing or
augmenting OO indirection with AOP indications can lead to better
designs [18].
Kühne showed the benefits of combining programming paradigms
via design patterns [12]. In his work, he introduces design patterns
to integrate high-level concepts from functional programming in
OOP.
DemeterJ is an adaptive aspect-oriented extension to Java and
another example of how new language constructs can make design
patterns (as described in GoF) disappear. The Visitor design pattern
is directly supported in DemeterJ [26].
A few aspect-oriented design patterns have been suggested. For
example, Lorenz’s work describing Visitor Beans, an AOP pattern
using JavaBeans [14], or AOP versions of particular design patterns
as the Command pattern [20].

6.2 Pattern libraries, parameterized patterns,
and tool support
Since design pattern descriptions contain information about how the
participants interact with each other, what interfaces and variables
they have to have, it is only natural to investigate how much of the
design and code generation process can be automated. In many
cases, the design patterns “essence” can be encapsulated in an
abstract aspect and reused. These aspects can be thought of as a
library for patterns, or as library of building blocks for systems using
design patterns.
Budinsky et al. [4] propose a tool for automated code generations
from design pattern descriptions. Their tool integrates pattern code
into existing systems using multiple inheritance. An interesting

property of their tool is that it allows for different versions of each
design pattern, according to the pattern descriptions in GoF. Such
design choices are dynamically reflected in updated UML diagrams
and changed code, so that developers can see the effects of their
choices.
In a paper by Florijn et al. [7] a different tool is presented that uses
a pattern representation based on so-called fragments (see section
6.5) that allows detecting whether a pattern does not conform to a
particular design pattern “contract” and that can suggest
improvements.
A paper by Mapelsden et. al. [15] shows a CASE tool that uses
their design pattern modeling language DPML (see section 6.5).
The tool provides an explicit separation between design patterns,
their instances, and object models, which a user study found
effective in managing the use of design patterns.
Alexandrescu’s [2] generic components offer a different approach
to make design pattern more flexible and reusable. These
components are reusable C++ templates that are used to create
new pattern implementations with little recoding. In [21], Soukup
describes a C++ library of reusable pattern implementations, which
uses an approach quite similar to ours. To avoid invasive changes to
existing classes, “pattern classes” are introduced, which are
encapsulations of the pattern role implementations. These classes
include pattern code and a description of the pattern and participants
in a parameterized form describing the roles and which code to
inject where. Concrete instance of a pattern are created using these
descriptions and a special code generator. In our work, the
functionality of the pattern classes are replaced by abstract aspects
that encapsulate the roles and pattern behaviors. Instead of weaving
a role-class mapping and the description to create code, a concrete
aspect is used to assign the roles and to fit in appropriate code.

6.3 Pattern Classification
Based on our comparison, we classify design patterns according to
their usage of roles, as this is what we found to affect their potential
to benefit from an aspect-oriented implementation.
Various works have addressed the growing number of design
patterns and tried to classify existing patterns according to various
characteristics. Agerbo [1] distinguishes between fundamental
design patterns (FDPs), and language-dependent design patterns
(LDDPs). While FDPs are not covered by any language construct
(in any language), LDDDs have different implementations (or
disappear completely) depending on the language used.
Gil [10] proposes a similar classification based on the closeness of
patterns to actual language constructs. He identifies three different
types of patterns: clichés, idioms, and cadet patterns. Clichés are
“common uses of prevalent mechanisms” of a particular
programming language, idioms are language mechanisms of non-
mainstream languages, and cadet patterns are “abstraction
mechanisms not yet incorporated in any programming language”.
We used the reasoning that Façade is more a generally accepted
mechanism for information hiding (a Cliché in Gil’s terminology)
than a fully-fledged pattern to explain why it does not profit from an
AspectJ implementation.
Zimmer [23] investigated the relationship between patterns in
pattern compositions. He introduces a three-layer classification of
the GoF design pattern based on their potential role in pattern

compositions. The different categories are “basic design patterns
and techniques” for rudimentary patterns used in others; “design
patterns for typical software problems” for higher-level patterns for
more specific problems. Finally, “design patterns specific to an
application domain” is for domain specific patterns. Compared to
our work it appears that patterns that use other patterns in their
solution (i.e. are higher up in the hierarchy) should introduce more
crosscutting than others and profit more form an AspectJ
implementation. It turns out, however, that the usage of roles is
much more relevant for determining how crosscutting a pattern is.

6.4 Roles and pattern composition
Pattern composition has been shown as a challenge to applying
design patterns. In our work, we show how coding design patterns
as aspects can solve the modularity problems associated with
pattern composition.
The Role Object Pattern [3] has been introduced to deal with
different requirements imposed on objects in different contexts. This
approach is an OO attempt to deal with superimposed roles5. The
separation of core functionality and role is realized by introducing
role object fields into the core classes, which themselves share a
high-level interface with the role classes. This creates cyclic
references: ComponentCore stores a list of roles, and each
ComponentRole has a reference to the core object they are
attached to. While introducing tight coupling between core and role,
this approach enables dynamically adding and removing roles from
an object. Fowler [8] presents guidelines on different variations of
the pattern and when to use them.
Other work describes different approaches to model roles and their
relationship to the concrete classes playing those roles. Mikkonen
[16] formalizes them as behavioral layers (object slices). Florijn et.
al. [7] introduces a fragment model (see below) that represents
participant roles as a particular kind of fragments. Mapelsden et. al
[15] differentiate explicitly between patterns, their instances, and
object models. Their graphical notation (DMPL) allows mapping
roles to concrete classes. Design pattern libraries and code
generators usually introduce a means to assign pattern roles to
concrete classes. The most commonly used tools to weave role-
related code into existing classes are multiple inheritance [1, 4, 16],
or a dedicated weaver [21].

6.5 Alternative pattern representations
This area is remotely related in that it outlines new approaches to
design pattern notation.
A number of papers address problems with the preciseness of the
pattern description format presented in GoF. Lauder and Kent [13]
introduce a hierarchical model (consisting of three layers based on
UML notations) for describing pattern structures and dynamic
behavior. The role model captures the “pure pattern”, and is refined
by a type-model (similar to the GoF UML diagrams), which is in
turn refined by an instance-specific model that uses the concrete
names a particular pattern instance. The authors claim that the three
models complement each other and that a developer should have
access to all three models of a particular pattern.

5 In that the core classes already have defined responsibility and the

role introduces additional responsibilities.

Florijn et. al. [7] suggest a fragment-based representation of design
patterns. A fragment depicts a design element such as a class,
method or association). Patterns themselves and all elements in a
pattern instance (classes, relationships among them, code) are
represented as (graphs of) fragments.
Mapelsden et. al. [15] introduce the design pattern modeling
language DPML, built upon similar concepts as UML. This multi-
level approach (design patterns, pattern instances, and object
models) makes it possible to show objects and their roles within the
pattern.
Mikkonen [16] addresses the problem that the temporal behavior of
design patterns is difficult to reason about and proposes a formal
notation for this purpose. This model formalizes patterns as
behavioral layers, and realizes the interactions between objects as
atomic actions. With this approach, pattern compositions can be
modeled.

7. SUMMARY
Improvement from using AspectJ in pattern implementations is
directly correlated to the presence of crosscutting structure in the
patterns. This crosscutting structure arises in patterns that
superimpose behavior on their participants. In such patterns the
roles can crosscut participant classes, and conceptual operations
can crosscut methods (and constructors). Multiple such patterns can
also crosscut each other with respect to shared participants.
The improvements manifest themselves as a set of properties
related to modularity. The pattern implementations are more
localized, and in a number of cases are reusable. Because the
AspectJ solutions better align dependencies in the code with
dependencies in the solution structure, AspectJ implementations of
the patterns are sometimes also composable.
Localizing pattern implementation provides inherent code
comprehensibility benefits – the existence of a single named unit of
pattern code makes the presence and structure of the pattern more
explicit. In addition, it provides an anchor for improved
documentation of the code.
Our results suggest several directions for further experimentation,
including applying AspectJ to more patterns, attempting to make
systematic use of our reusable pattern implementations, and
attempting to use AspectJ in legacy code bases that are known to
be influenced by design pattern thinking. Another avenue for future
work is to compare these results with the use of other aspect-
oriented techniques.

8. ACKNOWLEDGEMENTS
Our thanks go to Gail Murphy and the anonymous reviewers for
their helpful comments on earlier versions of this paper.

9. REFERENCES
[1] Agerbo, E., Cornils, A. How to preserve the benefits of Design

Patterns. Proceedings of OOPSLA 1998, pp. 134-143

[2] Alexandrescu, A. Modern C++ Design: Generic Programming
and Design Patterns Applied. Addison-Wesley, 2001

[3] Bäumer, D., Riehle, D., Siberski, W., and Wulf, M. Role
Object Pattern. Proceedings of PLoP '97. Technical Report

WUCS-97-34. Washington University Dept. of Computer
Science, 1997

[4] Budinsky, F., Finnie, M., Yu, P., Vlissides, J. Automatic code
generation from Design Patterns. IBM Systems Journal 35(2):
151-171

[5] Coplien, J. O. Idioms and Patterns as Architectural Literature.
IEEE Software Special Issue on Objects, Patterns, and
Architectures, January 1997

[6] Coplien, J. O. Software Design Patterns: Common Questions
and Answers. In: Rising L., (Ed.), The Patterns Handbook:
Techniques, Strategies, and Applications. Cambridge
University Press, NY, January 1998, pp. 311-320

[7] Florijn, G., Meijers, M., Winsen, P. van. Tool support for
object-oriented patterns. Proceedings of ECOOP 1997

[8] Fowler M.: Dealing with roles. Proceedings of PLoP '97.
Technical Report WUCS-97-34. Washington University Dept.
of Computer Science, 1997

[9] Gamma, E. et al. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994

[10] Gil, J., Lorenz, D. H. Design Patterns vs. Language Design.
ECOOP 1997 Workshop paper

[11] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., and Irwing, J. Aspect-Oriented
Programming. Proceedings of ECOOP ’97, Springer Verlag,
pages 220-242, 1997

[12] Kühne, T. A Functional Pattern System for Object-Oriented
Design. Ph.D. Thesis, Darmstadt University of Technology,
Verlag Dr. Kovac, ISBN 3-86064-770-9, July 1999

[13] Lauder, A., Kent, S. Precise Visual Specification of Design
Patterns. Proceedings of ECOOP 1998

[14] Lorenz, David H. Visitor Beans: An Aspect-Oriented Pattern.
ECOOP 1998 Workshops, pages 431-432, 1998

[15] Mapelsden, D., Hosking, J. and Grundy, J. Design Pattern
Modelling and Instantiation using DPML. In Proceeding of
TOOLS Pacific 2002, Sydney, Australia. Conferences in
Research and Practice in Information Technology, 10. Noble,
J. and Potter, J., Eds., ACS

[16] Mikkonen, T. Formalizing Design Patterns. Proceedings of
ICSE 1998, pp. 115-124

[17] Nordberg, M. E. Aspect-Oriented Dependency Inversion.
OOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, October 2001

[18] Nordberg, M. E. Aspect-Oriented Indirection – Beyond
Object-Oriented Design Patterns. OOPSLA 2001 Workshop
"Beyond Design: Patterns (mis)used", October 2001

[19] Norvig, P. Design Patterns in Dynamic Programming. In:
Object World 96, Boston MA, May 1996

[20] Sletten, B. Beyond Actions – A Semantically Rich Command
Pattern for the Java™ Foundation Classes (JFC/Swing) API.
Presentation at JavaOne 2002

[21] Soukup, J. Implementing Patterns. In: Coplien J. O., Schmidt,
D. C. (eds.) Pattern Languages of Program Design. Addison
Wesley 1995, pp. 395-412

[22] Sullivan, G. T. Advanced Programming Language Features for
Executable Design Patterns. Lab Memo, MIT Artificial
Intelligence Laboratory, number AIM-2002-005, 2002

[23] Zimmer, W. Relationships Between Design Patterns. In:
Coplien, J. O., Schmidt, D. C. (eds.) Pattern Languages of
Program Design. Addison-Wesley, 1995, pp. 345-364

[24] The AspectJ user mailing list. http://aspectj.org/pipermail/users/

[25] The AspectJ web site. http://www.aspectj.org

[26] The DemeterJ web site.
http://www.ccs.neu.edu/research/demeter/DemeterJava/

[27] The Java web site. http://www.java.sun.com

