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ABSTRACT 
AspectJ implementations of the GoF design patterns show 
modularity improvements in 17 of 23 cases. These improvements 
are manifested in terms of better code locality, reusability, 
composability, and (un)pluggability. 

The degree of improvement in implementation modularity varies, 
with the greatest improvement coming when the pattern solution 
structure involves crosscutting of some form, including one object 
playing multiple roles, many objects playing one role, or an object 
playing roles in multiple pattern instances. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures – 
patterns, information hiding, and languages; D.3.3 
[Programming Languages]: Language Constructs and Features – 
patterns, classes and objects 

General Terms  
Design, Languages. 

Keywords 
Design patterns, aspect-oriented programming. 

1. INTRODUCTION 
The Gang-of-Four (GoF) design patterns [9] offer flexible solutions 
to common software development problems. Each pattern is 
comprised of a number of parts, including purpose/intent, 
applicability, solution structure, and sample implementations.  
A number of GoF patterns involve crosscutting structures in the 
relationship between roles in the pattern and classes in each 
instance of the pattern [6]. In the Observer pattern, an operation 
that changes any Subject must trigger notifications of its Observers 
– in other words the act of notification crosscuts one or more 
operations in each Subject in the pattern. In the Chain Of 
Responsibility pattern, all Handlers need to be able to accept 
requests or events and to either handle them or forward them to the 

successor in the chain. The event handling mechanism crosscuts the 
Handlers. 
When the GoF patterns were first identified, the sample 
implementations were geared to the current state of the art in 
object-oriented languages. Other work [19, 22] has shown that 
implementation language affects pattern implementation, so it seems 
natural to explore the effect of aspect-oriented programming 
techniques [11] on the implementation of the GoF patterns.  
As an initial experiment we chose to develop and compare Java 
[27] and AspectJ [25] implementations of the 23 GoF patterns. 
AspectJ is a seamless aspect-oriented extension to Java, which 
means that programming in AspectJ is effectively programming in 
Java plus aspects. 
By focusing on the GoF patterns, we are keeping the purpose, 
intent, and applicability of 23 well-known patterns, and only allowing 
the solution structure and solution implementation to change. So we 
are not discovering new patterns, but simply working out how 
implementations of the GoF patterns can be handled using a new 
implementation tool. 
Our results show that using AspectJ improves the implementation of 
many GoF patterns. In some cases this is reflected in a new solution 
structure with fewer or different participants, in other cases, the 
structure remains the same, only the implementation changes.  
Patterns assign roles to their participants, for example Subject and 
Observer for the Observer pattern. These roles define the 
functionality of the participants in the pattern context. We found that 
patterns with crosscutting structure between roles and participant 
classes see the most improvement. 
The improvement comes primarily from modularizing the 
implementation of the pattern.  This is directly reflected in the 
implementation being textually localized. An integral part of 
achieving this is to remove code-level dependencies from the 
participant classes to the implementation of the pattern.  
The implementation of 17 of the patterns is modularized in this way. 
For 12 of the patterns, the modularity enables a core part of the 
implementation to be abstracted into reusable code. For 14, it 
enables transparent composition of pattern instances, so that 
multiple patterns can have shared participants. For the 17 
modularized patterns, all pattern code from some or all participants 
is moved into the pattern aspect, allowing those participants to be 
(un)pluggable with respect to the pattern. 
These results – 74% of GoF patterns implemented in a more 
modular way, and 52% reusable – suggest it would be worthwhile to 
undertake the experiments of applying AspectJ to more patterns 
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and/or applying other aspect-oriented techniques to pattern 
implementations.  
The rest of the paper is organized as follows. Section 2 surveys 
previously identified problems in design pattern implementation. 
Section 3 introduces the study format. In section 4, we present our 
AspectJ implementations and categorize the improvements we 
observed. Section 5 shows an analysis of our findings and 
observations. Related work is discussed in section 6, and Section 7 
summarizes our work. 

2. ESTABLISHED CHALLENGES 
Numerous authors have identified challenges that arise when 
patterns are concretized in a particular software system. The three 
most important challenges are related to implementation, 
documentation, and composition. 
Design pattern implementation usually has a number of undesirable 
related effects. Because patterns influence the system structure and 
their implementations are influenced by it [7], pattern 
implementations are often tailored to the instance of use. This can 
lead to them “disappearing into the code” [7] and losing their 
modularity [21]. This makes it hard to distinguish between the 
pattern, the concrete instance and the object model involved [15]. 
Adding or removing a pattern to/from a system is often an invasive, 
difficult to reverse change [4]. Consequently, while the design 
pattern is reusable, its implementations usually are not [21]. 
The invasive nature of pattern code, and its scattering and tangling 
with other code creates documentation problems [21]. If multiple 
patterns are used in a system, it can become difficult to trace 
particular instances of a design pattern, especially if classes are 
involved in more than one pattern (i.e. if there is pattern 
overlay/composition) [1]. 
Pattern composition causes more than just documentation problems. 
It is inherently difficult to reason about systems with multiple 
patterns involving the same classes, because the composition 
creates large clusters of mutually dependent classes [21]. This is an 
important topic because some design patterns explicitly use others 
patterns in their solution. 

3. STUDY FORMAT 
The findings presented in this paper are based on a comparative 
analysis of Java and AspectJ implementations of the GoF design 
patterns. 
For each of the 23 GoF patterns we created a small example that 
makes use of the pattern, and implemented the example in both Java 
and AspectJ.1 The Java implementations correspond to the sample 
C++ implementations in the GoF book, with minor adjustments to 
account for the differences between C++ and Java (lack of multiple 
inheritance, etc.). Most patterns have a number of implementation 
variants and alternatives. If a pattern offered more than one 
possible implementation, we picked the one that appeared to be the 
most generally applicable. 
The AspectJ implementations were developed iteratively. The 
AspectJ constructs allowed a number of different implementations, 

                                                             
1 The code is available for download at: 

http://www.cs.ubc.ca/labs/spl/projects/aodps.html   

usually with varying tradeoffs. Our goal was to fully investigate the 
design space of clearly defined implementations of each pattern. 
We ended up creating a total of 57 different implementations, which 
ranged from 1 to 7 per pattern. Some of the tradeoffs and design 
decisions are discussed in Section 4. 

4. RESULTS 
This section presents a comparison of the AspectJ and Java 
implementations of concrete instances of the GoF design patterns. 
Section 4.1 is a detailed discussion of the Observer pattern. We use 
this discussion to present properties common to most of the AspectJ 
solutions. The remaining patterns are presented by building on the 
concepts developed in Section 4.1. 

4.1 Example: the Observer pattern 
The intent of the Observer pattern is to “define a one-to-many 
dependency between objects so that when one object changes state, 
all its dependents are notified and updated automatically”[9]. 
Object-oriented implementations of the Observer pattern, such as 
the sample code in the GoF book (p. 300-303), usually add a field to 
all potential Subjects that stores a list of Observers interested in that 
particular Subject. When a Subject wants to report a state change to 
its Observers, it calls its own notify method, which in turn calls 
an update method on all Observers in the list. 
Consider a concrete example of the Observer pattern in the context 
of a simple figure package, as shown in Figure 1. In such a system 
the Observer pattern would be used to cause mutating operations to 
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Figure 1. A simple Graphical Figure Element System that 

uses the Observer pattern in Java. The underlined methods 
contain code necessary to implement this instance of the  

Observer pattern. 



figure elements to update the screen. As shown in the figure, code 
for implementing this pattern is spread across the classes. 
All participants (i.e. Point and Line) have to know about their 
role in the pattern and consequently have pattern code in them. 
Adding or removing a role from a class requires changes in that 
class. Changing the notification mechanism (such as switching 
between push and pull models [9]) requires changes in all 
participating classes. 

4.1.1 The abstracted Observer pattern 
In the structure of the Observer pattern, some parts are common to 
all potential instantiations of the pattern, and other parts are specific 
to each instantiation. The parts common to all instantiations are: 

1. The existence of Subject and Observer roles (i.e. the fact 
that some classes act as Observer and some as Subject). 

2. Maintenance of a mapping from Subjects to Observers. 
3. The general update logic: Subject changes trigger 

Observer updates. 
The parts specific to each instantiation of the pattern are: 

4. Which classes can be Subjects and which can be 
Observers. 

5. A set of changes of interest on the Subjects that trigger 
updates on the Observers 

6. The specific means of updating each kind of Observer 
when the update logic requires it. 

We developed AspectJ code that reflects this separation of reusable 
and instance-specific parts. An abstract aspect encapsulates the 
generalizable parts (1-3), while one concrete extension of the aspect 
for each instance of the pattern fills in the specific parts (4-6). The 
reusable ObserverProtocol aspect is shown in Figure 2.  

4.1.1.1 The roles of Subject and Observer 
The roles are realized as protected inner interfaces named 
Subject and Observer (Figure 2, line 3-4). Their main purpose 
is to allow for correct typing of Subjects and Observers in the 
context of the pattern implementation, such as in methods like 
addObserver. Concrete extensions of the 
ObserverProtocol aspect assign the roles to particular classes 
(see below). 
These interfaces are protected because they will only be used by 
ObserverProtocol and its concrete extensions. No code 
outside the aspect and extensions needs to handle objects in terms 
of these roles. 
These interfaces are empty because the pattern defines no methods 
on the Subject or Observer roles. The methods that would typically 
be defined on the Subject and Observer are instead defined on the 
aspect itself (see below). 
For patterns that were abstractable we had to decide where to put 
the role interfaces. Two locations are possible: Either as a private 
interface inside the abstract aspect or as a separate public interface. 
We made this decision based on whether the role interface 
introduces client-accessed functionality, i.e. exposes functionality to 
clients (as for Strategy, Iterator, etc.) or not (as in the Observer 
case). If the role has no client-accessible functionality, it will only be 
referenced from within pattern aspects. For that reason, we placed 

it in the abstract aspect. In the other case, we moved the interface 
into a separate file to make it easier to reference.  

4.1.1.2 The Subject-Observer mapping 
Implementation of the mapping in the AspectJ code is localized to 
the ObserverProtocol aspect. It is realized using a weak hash 
map of linked lists to store the Observers for each Subject (line 6). 
As each pattern instance is represented by a concrete subaspect2 of 
ObserverProtocol, each instance will have its own mapping. 
Changes to the Subject-Observer mappings can be realized via the 
public addObserver and removeObserver methods (line 21-
26) that concrete subaspects inherit. To have a Screen object S 
become the Observer of a Point Subject P, clients call these 
methods on the appropriate subaspect (e.g. ColorObserver): 
  ColorObserving.aspectOf().addObserver(P, S); 

The private getObservers method is only used internally. It 
creates the proper secondary data structures (linked lists) on 
demand (line 8-19). Note that in this implementation the Subject-
Observer mapping data structure is centralized in each concrete 
extension. All concrete aspects that subclass the abstract pattern 
                                                             
2 A subaspect is the concrete extension of an abstract aspect, the 

concept being similar to subclasses in OO languages 

01 public abstract aspect ObserverProtocol { 
02  
03   protected interface Subject  { } 
04   protected interface Observer { }  
05     
06   private WeakHashMap perSubjectObservers;07 
08   protected List getObservers(Subject s) { 
09     if (perSubjectObservers == null) { 
10       perSubjectObservers = new WeakHashMap();  
11     } 
12     List observers =  
13       (List)perSubjectObservers.get(s); 
14     if ( observers == null ) { 
15       observers = new LinkedList(); 
16       perSubjectObservers.put(s, observers); 
17     } 
18     return observers; 
19   } 
20  
21   public void addObserver(Subject s,Observer o){  
22     getObservers(s).add(o); 
23   }  
24   public void removeObserver(Subject s,Observer o){ 
25     getObservers(s).remove(o); 
26   } 
27  
28   abstract protected pointcut  
29     subjectChange(Subject s); 
30  
31   abstract protected void  
32     updateObserver(Subject s, Observer o); 
33  
34   after(Subject s): subjectChange(s) { 
35     Iterator iter = getObservers(s).iterator(); 
36     while ( iter.hasNext() ) { 
37       updateObserver(s, ((Observer)iter.next())); 
38     } 
39   } 
40 }  

Figure 2: The generalized ObserverProtocol aspect 



aspect will automatically have an individual copy of the field. This 
follows the structure presented in [9]. This can cause a bottleneck 
in some situations. These can be fixed, on a per pattern-instance 
basis, by overriding getObservers with a method that uses a 
more decentralized data structure. 
Generally, whenever a pattern solution requires a mapping between 
participants (i.e. the successor field of handlers in Chain Of 
Responsibility) and the pattern implementation is abstractable, we 
can either define a field on the participant, or keep the mapping in a 
central data structure in the abstract aspect (as in this example). 
Whichever approach is chosen, the point of access to the data 
structure is the instance-specific aspect, so that different instances 
of the pattern involving the same participants are possible and will 
not become confused.  

4.1.1.3 The update logic 
In the reusable aspect, the update logic implements the general 
concept that Subjects can change in ways that require all their 
observers to be updated. This implementation does not define 
exactly what constitutes a change, or how Observers should be 
updated. The general update logic consists of three parts: 
The changes of interest depict conceptual operations, a set of 
points in program execution, at which a Subject should update its 
Observers (to notify them of changes to its state). In AspectJ, sets 
of such points are identified with pointcut constructs. In the reusable 
aspect, we only know there are modifications of interest, but we do 
not know what they are. Therefore, we define an abstract pointcut 
named subjectChange that is to be concretized by instance-
specific subaspects (line 28-29). 
In the reusable part we only know that the Observers will have to 
be updated in the context of the pattern, but cannot predict how that 
is best achieved. We define an abstract update method 
updateObserver that will be concretized for each pattern 
instance (line 31-32). That way, each instance of the Observer 
pattern can choose its own update mechanism. 
Finally, the reusable aspect implements the update logic in terms of 
the generalizable implementation parts mentioned above. This logic 
is contained in the after advice (line 34-39). This after advice says: 
whenever execution reaches a join point matched by the 

subjectChange pointcut, update all Observers of the 
appropriate Subject afterwards.  

4.1.2 Pattern-instance-specific concrete aspects 
Each concrete subaspect of ObserverProtocol defines one 
particular kind of observing relationship, in other words a single 
pattern instance. Within that kind of relationship, there can be any 
number of Subjects, each with any number of Observers. The 
subaspect defines three things: 

• The classes that play the roles of Subjects and Observers. 
This is done using the declare parents construct, 
which adds superclasses or super-interfaces to a class, to 
assign the roles defined in the abstract aspect.  

• The conceptual operations on the subject that require 
updating the Observers. This is done by concretizing the 
subjectChange pointcut. 

• How to update the observers. This is done by concretizing 
updateObserver. The choice between push or pull 
model for updates is no longer necessary as we have 
access to both the Subject and the Observer at this point 
and can customize the updates. 

The declare parents construct is part of the AspectJ open 
class mechanism that allows aspects to modify existing classes 
without changing their code. This open class mechanism can attach 
fields, methods, or – as in this case – interfaces to existing classes. 
Figure 3 shows two different instances of the Observer pattern 
involving the classes Point, Line, and Screen. In both 
instances, Point and Line play the role of Subject, and Screen 
plays the role of Observer. The first observes color changes, and 
the second observes coordinate changes. 
Note that the type casts in line 13 and 31 are expected disappear 
with the planned AspectJ support for generics. It will then be 
possible to create parameterized subaspects that incorporate the 
role assignment and are type safe. 
Particular classes can play one or both of the Subject and Observer 
roles, either in the same pattern instance or separate pattern 
instances. Figure 4 shows a third pattern instance in which Screen 
acts as Subject and Observer at the same time. 

01 public aspect ColorObserver extends ObserverProtocol {   16 public aspect CoordinateObserver extends  
02                                                          17   ObserverProtocol { 
03   declare parents: Point  implements Subject;            18    
04   declare parents: Line   implements Subject;            19   declare parents: Point  implements Subject; 
05   declare parents: Screen implements Observer;           20   declare parents: Line   implements Subject; 
06                                                          21   declare parents: Screen implements Observer; 
07   protected pointcut subjectChange(Subject s):           22    
08     (call(void Point.setColor(Color)) ||                 23   protected pointcut subjectChange(Subject s):    
09      call(void  Line.setColor(Color)) ) && target(s);    24      (call(void Point.setX(int))   
10                                                          25       || call(void Point.setY(int)) 
11   protected void updateObserver(Subject s,               26       || call(void Line.setP1(Point))  
12                                 Observer o) {            27       || call(void Line.setP2(Point)) ) && target(s); 
13     ((Screen)o).display("Color change.");                28  
14   }                                                      29   protected void updateObserver(Subject s, 
15 }                                                        30                                 Observer o) { 
                                                            31     ((Screen)o).display("Coordinate change."); 
                                                            32   } 
                                                            33 } 
 

Figure 3. Two different Observer instances. 



In the AspectJ version all code pertaining to the relationship 
between Observers and Subjects is moved into an aspect, which 
changes the dependencies between the modules. Figure 5 shows the 
structure for this case.  

4.1.3 Properties of this implementation 
This implementation of the Observer pattern has the following 
closely related modularity properties:  

• Locality – All the code that implements the Observer 
pattern is in the abstract and concrete observer aspects, 
none of it is in the participant classes. The participant 
classes are entirely free of the pattern context, and as a 
consequence there is no coupling between the 
participants. Potential changes to each Observer pattern 
instance are confined to one place.  

• Reusability – The core pattern code is abstracted and 
reusable. The implementation of ObserverProtocol is 
generalizing the overall pattern behavior. The abstract 
aspect can be reused and shared across multiple 
Observer pattern instances. For each pattern instance, we 
only need to define one concrete aspect.  

• Composition transparency – Because a pattern 
participant’s implementation is not coupled to the pattern, 
if a Subject or Observer takes part in multiple observing 
relationships their code does not become more 
complicated and the pattern instances are not confused. 
Each instance of the pattern can be reasoned about 
independently. 

• (Un)pluggability – Because Subjects and Observers 
need not be aware of their role in any pattern instance,  it 
is possible to switch between using a pattern and not 
using it in the system. 

4.2 Other patterns 
In the following we describe the remaining 22 GoF patterns and 
how the AspectJ implementation is different from a pure Java 
version. The patterns are grouped by common features, either of the 
pattern structures or their AspectJ implementations.  

4.2.1 Composite, Command, Mediator, Chain of 
Responsibility: roles only used within pattern aspect 
Similar to the Observer pattern, these patterns introduce roles that 
need no client-accessible interface and are only used within the 
pattern. In AspectJ such roles are realized with empty (protected) 

interfaces. The types they introduce are used within the pattern 
protocol. One abstract aspect for each pattern defines the roles and 
attaches default implementations where possible (see Figure 6 for 
parts of the abstract Composition aspect).  
For patterns involving particular conceptual operations, the abstract 
pattern aspect introduces an abstract pointcut (to be concretized for 
each instance of the pattern), which captures the join points that 
should trigger important events (such as the execution of a 
Command in the Command pattern). As in the Observer example, 
advice (after, before, or around) is responsible for calling the 
appropriate methods. 
In the Composite case, to allow walking the tree structure inherent 
to the patterns, we define facilities to have a visitor traverse and/or 
change the structure. These visitors are defined in the concrete 
aspect. See Figure 7 for an example of how statistics can be 
collected from the Composition structure. In this example we show 
an instance of the Composite pattern modeling a file system. 
Directories are Composites, and files are Leafs. The example 
shows how to calculate the disk space needed for the file system, 
assuming that File objects have a size field. Again, clients use a 
public method on the aspect to access the new functionality. 
Appropriate methods on the participants are introduced privately 
and are visible only by the aspect.3  

4.2.2 Singleton, Prototype, Memento, Iterator, 
Flyweight: aspects as object factories 
These patterns administrate access to specific object instances. All 
of them offer factory methods to clients and share a create-on-
demand strategy. The patterns are abstracted (reusable) in AspectJ, 
with code for the factory in the aspect.  
In the AspectJ implementations, the factory methods are either 
parameterized methods on the abstract aspect or methods attached 
to the participants. If the former approach is used, multiple instances 
of the pattern compose transparently, even if all factory methods 
have the same names. The Singleton case is special in that we can 

                                                             
3 Due to a bug in AspectJ release 1.0.6 the private abstract 

introduction of Component.sizeOnDisk() does not work. 
This is scheduled to be fixed in the next release.  

01 public aspect ScreenObserver  
02               extends ObserverProtocol { 
03 
04  declare parents: Screen implements Subject; 
05  declare parents: Screen implements Observer; 
06 
07  protected pointcut subjectChange(Subject s):  
08    call(void Screen.display(String)) && target(s); 
09 
10  protected void updateObserver( 
11    Subject s, Observer o) { 
12      ((Screen)o).display("Screen updated."); 
13  }   
14 } 

Figure 4. The same class can be Subject and Observer 
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Figure 5: The structure of an instance of the Observer 

pattern in AspectJ. Subject and Observer roles crosscut 
classes, and the  changes of interest (the subjectChange 

pointcut) crosscuts methods in various classes. 



turn the original constructor into the factory method using around 
advice and returning the unique object on all constructor calls. 
Parameterized factory methods can alternatively be implemented 
according to Nordberg’s factory example [18]: the factory method 
is empty (returns null or a default object). Other return values are 
provided by around advice on that method. If the arguments are 
appropriate, the advice creates a new matching object; otherwise it 
just proceeds with the regular execution. This allows us extend the 
factory (in terms of new products) without changing its code. 
Participants no longer need to have pattern code in them; the 
otherwise close coupling between an original object and its 
representation or accessor (Memento, Iterator) is removed from the 
participants. 

4.2.3 Adapter, Decorator, Strategy, Visitor, Proxy: 
language constructs 
Using AspectJ, the implementation of some patterns completely 
disappears, because AspectJ language constructs implement them 
directly. This applies to these patterns in varying degrees.  
The Adapter and Visitor pattern can be realized by extending the 
interface of the Adaptee (via AspectJ’s open class mechanism). 
Decorator, Strategy and Proxy have alternate implementations 
based on attaching advice (mentioned for Decorator in [18]). 
While simpler and more modular, the approaches have inherent 
limitations. The advice-based implementation of Decorator loses its 
dynamic manipulation properties (dynamic reordering of 
Decorators) and is thus less flexible. The interface augmentation for 
Adapter cannot be realized in this manner when we want to 
replace an existing method with another one that has the same 
name and arguments but a different return type. 
Protection or delegation proxies can be implemented to be reusable 
using the above approach, but some applications of the Proxy 
pattern require the Proxy and the Subject to be two distinct objects 
(such as remote and virtual proxy). In these cases the Java and 
AspectJ implementations are identical. 

4.2.4 Abstract Factory, Factory Method, Template 
Method, Builder, Bridge: multiple inheritance 
These patterns are structurally similar: Inheritance is used to 
distinguish different but related implementations. As this is already 
nicely realized in OO, these patterns could not be given more 
reusable implementations. However, with AspectJ it is possible to 
replace the abstract classes mentioned in the GoF solution by 
interfaces without losing the ability to attach (default) 
implementations to their methods. With Java, we cannot use 
interfaces if we want to define a default implementation for 
methods that are part of the pattern code. In that respect, AspectJ’s 

public abstract aspect CompositionProtocol {   
   
  protected interface Component {} 
  protected interface Composite extends Component {} 
  protected interface Leaf    extends Component {} 
  
  private WeakHashMap perComponentChildren =  
    new WeakHashMap(); 
 
  private Vector getChildren(Component s) { 
    Vector children; 
    children = (Vector)perComponentChildren.get(s); 
    if ( children == null ) { 
      children = new Vector(); 
      perComponentChildren.put(s, children); 
    } 
    return children; 
  } 
   
  public void addChild(Composite composite,  
                       Component component) {    
    getChildren(composite).add(component);   
  } 
  public void removeChild(Composite composite,  
                          Component component) {  
    getChildren(composite).remove(component);  
  } 
   
  public Enumeration getAllChildren(Component c) {  
    return getChildren(c).elements();  
  } 
  
  protected interface FunctionVisitor { 
    public Object doIt(Component c); 
  } 
   
  protected static Enumeration  
   recurseFunction(Component c,  
                  FunctionVisitor fv) { 
    Vector results = new Vector(); 
    for (Enumeration enum = getAllChildren(c);  
      enum.hasMoreElements(); ) { 
        Component child; 
        child = (Component)enum.nextElement(); 
        results.add(fv.doIt(child)); 
    } 
    return results.elements(); 
  }  
}  

Figure 6. Part of the abstract Composite pattern 
implementation 

public aspect FileSystemComposite extends     
              CompositeProtocol { 
 
  declare parents: Directory implements Composite;      
  declare parents: File      implements Leaf;         

 
  public int sizeOnDisk(Component c) {      
    return c.sizeOnDisk(); 
  } 

 
  private abstract int Component.sizeOnDisk();     

     
  private int Directory.sizeOnDisk() {  

int diskSize = 0;  
java.util.Enumeration enum; 
for (enum =    
 SampleComposite.aspectOf().getAllChildren(this);   
 enum.hasMoreElements(); ) { 
   diskSize +=  
    ((Component)enum.nextElement()).sizeOnDisk(); 
} 
return diskSize; 

  } 
     

  private int File.sizeOnDisk()      {  
    return size;  
  } 
}       }    

Figure 7. Part of a Composition pattern instance aspect 



open class mechanism effectively provides a limited form of multiple 
inheritance.  

Besides that, Builder and Bridge have the following additional 
implementation considerations. For Builder, an aspect can intercept 
calls to the creation methods and replace them with alternate 
implementations using around advice (see Strategy above). For 
Bridge, a decoupling of Abstraction and Implementor can be 
achieved by using polymorphic advice as suggested by Nordberg 
[24]. While this approach reduces the coupling between the 
participants, it is less flexible when it comes to dynamically changing 
Implementors. 

4.2.5 State, Interpreter: scattered code modularized  
These patterns introduce tight coupling between their participants. 
In the AspectJ implementations, parts of the scattered code can be 
modularized.  
In the State pattern, the crosscutting code for state transitions can 
be modularized in an aspect using (mainly) after advice. For 
Interpreter, it is still possible to augment or change the behavior of 
the system without changing all participant classes. This can be 
accomplished by attaching methods to the participants using the 
open class mechanism. 

4.2.6 Façade: no benefit from AspectJ 
implementation 
For this pattern, the AspectJ approach is not structurally different 
from the Java implementation. Façade provides a unified interface 
to a set of interfaces to a subsystem, to make the subsystem easier 
to use. This example mainly requires namespace management and 
good coding style.  

5. ANALYSIS 
In this section, we present an analysis of the previously observed 
benefits of implementing patterns with AspectJ.  The analysis is 
broken into three parts: 

• The general improvements observed in many pattern re-
implementations. 

• The specific improvements associated with particular 
patterns. 

• The origins of crosscutting structure in patterns, and a 
demonstration that observed improvements correlate with 
the presence of crosscutting structure in the pattern. 

5.1 General Improvements 
For a number of patterns, the AspectJ implementations manifest 
several closely related modularity benefits: locality, reusability, 
dependency inversion, transparent composability, and 
(un)pluggability.  Attempting to say which of these is primary is 
difficult, instead we simply describe them and discuss some of their 
interrelationships. 
The AspectJ implementations of 17 of the 23 GoF patterns were 
localized. For 12 of these, the locality enables a core part of the 
implementation to be abstracted into reusable code. In 14 of the 17 
we observed transparent composability of pattern instances, so that 
multiple patterns can have shared participants (see Table 1). 
The improvements in the AspectJ implementations are primarily due 
to inverting dependencies, so that pattern code depends on 

participants, not the other way around. This is directly related to 
locality – all dependencies between patterns and participants are 
localized in the pattern code. 
An object or class that is oblivious of its role in a pattern can be 
used in different contexts (such as outside the pattern) without 
modifications or redundant code, thereby increasing the reusability 
of participants. If participants do not need to have pattern-specific 
code, they can be readily removed from or added to a particular 
pattern instance, making the participants (un)pluggable. To benefit 
from this, the participants must have a meaning outside the pattern 
implementation. For example, the participants in a Chain Of 
Responsibility pattern often have other responsibilities in the 
application they are in (as widgets in the GUI example in GoF), 
while Strategy objects usually just encapsulate an algorithm. 
The locality also means that existing classes can be incorporated 
into a pattern instance without the need to adapt them; all the 
changes are made in the pattern instance. This makes the pattern 
implementations themselves relatively (un)pluggable. 
Pattern locality should also allow a developer to easily impose global 
policies related to the design patterns, such as adding thread safety, 
logging facilities or performance optimizations. 
In essence, we observe typical advantages generally associated 
with localized concerns with regards to future changes and program 
evolution. In particular, the problematic case of pattern 
composition/overlay [1, 7, 15, 21] becomes better structured (and 
easier to reason about) when pattern instances are defined in 
separate modular units. 
In addition to code-level benefits, the modularity of the design 
pattern implementation also results in an inherent documentation 
benefit. As mentioned in [1, 21], the mere existence of classes that 
exclusively contain pattern code serve as records of what patterns 
are being used. In the AspectJ cases, we observe two additional 
improvements. First, all code related to a particular pattern instance 
is contained in a single module (which defines participants, assigns 
roles, etc.). This means that the entire description of a pattern 
instance is localized and does not “get lost” [21] or “degenerate” [7] 
in the system. Secondly, with the current AspectJ IDE support, all 
references, advised methods etc. are hyperlinks that allow a 
developer an overview of the assignment of roles and where the 
conceptual operations of interest are.  
In 12 cases we were able to develop reusable pattern 
implementations. This happened by generalizing the roles, pattern 
code, communication protocols, and relevant conceptual operations 
in an abstract reusable aspect. For any concrete instance of the 
pattern, the developer defines the participants (assigns roles) and 
fills in instance-specific code. Changes to communication protocols 
or methods that are part of the abstract classes or interfaces 
involved do not require adjusting all participants. 
If we can reuse generalized pattern code and localize the code for a 
particular pattern instance, multiple instances of the same pattern in 
one application are not easily confused (composition transparency). 
The same participating object or class can even assume different 
roles in different instances of the same pattern (see the Observer 
example above). This solves a common problem with having 
multiple instances of a design pattern in one application. 



5.2 Specific improvements 
5.2.1 The Singleton case 
The AspectJ version of the pattern implementation opened up two 
design options that are not possible in Java: First, is Singleton an 
inherited property, or do we have an inheritance anomaly? Second, 
do we want a devoted factory method to provide the Singleton 
instance, or do we want the constructor to return it whenever it is 
called?  

We decided to implement the Singleton property as inherited, but 
provided facilities to exclude specific subclasses from the Singleton 
protection if desired. 
For the second, we decided that using the constructor instead of a 
devoted factory method was beneficial.  The factory, if desired, can 
then be implemented either directly in the class, or as a 
transparently composed aspect. 

5.2.2 Multiple inheritance and Java 
As originally presented, some of the GoF patterns make use of 
multiple-inheritance in their implementation, for example the class 

Table 1. Design pattern, roles, and desirable properties of their AspectJ implementations  

 Modularity Properties Kinds of Roles 

Pattern Name Locality(**) Reusability 
Composition 

Transparency (Un)pluggability Defining(*) Superimposed 

Façade Same implementation for Java and AspectJ Façade   - 

Abstract Factory no no no no Factory, Product  - 

Bridge no no no no Abstraction, Implementor - 

Builder no no no no Builder, (Director)  - 

Factory Method no no no no Product, Creator  - 

Interpreter no no n/a no Context, Expression  - 

Template Method (yes) no no (yes) 
(AbstractClass), 
(ConcreteClass) 

(AbstractClass), 
(ConcreteClass) 

Adapter yes no yes yes Target, Adapter Adaptee 

State (yes) no n/a (yes) State Context 

Decorator yes no yes yes Component, Decorator ConcreteComponent 

Proxy (yes) no (yes) (yes) (Proxy) (Proxy) 

Visitor (yes) yes yes (yes) Visitor Element 

Command (yes) yes yes yes 
Command Commanding, Receiver

Composite yes yes yes (yes) (Component) (Composite, Leaf) 

Iterator yes yes yes yes (Iterator) Aggregate 

Flyweight yes yes yes yes FlyweightFactory Flyweight 

Memento yes yes yes yes Memento Originator 

Strategy yes yes yes yes Strategy Context 

Mediator yes yes yes yes  - (Mediator), Colleague 

Chain of Responsibility yes yes yes yes  - Handler 
Prototype yes yes (yes) yes  - Prototype 
Singleton yes yes n/a yes  - Singleton 
Observer yes yes yes yes  - Subject, Observer 
 (*) The distinctions between defining and superimposed roles for the different patterns were not always easy to make. In some cases, roles are 
clearly superimposed (e.g. the Subject role in Observer), or defining (e.g. State in the State pattern). If the distinction was not totally clear, the role 
names are shown in parentheses in either or both categories.  

(**) Locality: “(yes)” means that the pattern is localized in terms of its superimposed roles but the implementation of the remaining defining role is 
still done using multiple classes (e.g. State classes for the State pattern). In general, (yes) for a desirable property means that some restrictions apply 



version of the Adapter pattern. For many patterns, the roles that 
participants play within the patterns are realized as abstract classes 
in Java. Participant classes inherit interfaces and default 
implementations from these abstract classes. But if the participant 
classes have functionality outside the pattern context (such as GUI 
widgets as Subjects or Observers in the Observer pattern), they are 
usually already part of an inheritance hierarchy. Since Java lacks 
multiple inheritance, implementation in these cases can be 
somewhat awkward: In Java, if a participant has to inherit both its 
role and its other functionality, then one of the supertypes has to be 
realized as an interface. Unfortunately, interfaces in Java cannot 
contain code, making it impossible to attach default implementations 
of methods, for example.  

The open class mechanism in AspectJ provides us with a more 
flexible way of implementing these patterns, as it allows to attach 
both interfaces and implementations (code) to existing classes. 

5.2.3 Breaking cyclic dependencies 
Some design patterns regulate complex interactions between sets of 
objects. In object-oriented implementations these classes are tightly 
coupled and mutually dependent. One example of a design pattern 
that introduces cyclic dependencies is Mediator, a variation of the 
Observer pattern that is often used in UI programming. Here, 
changes to Colleagues (e.g. widgets) trigger updates in the Mediator 
object (e.g. director). The Mediator, on the other hand, might update 
some or all of the Colleagues as a reaction to this. 
A typical structure for this pattern is shown in Figure 8 (left). 
Inheritance relationships (the Mediator and Colleague interface) are 
not shown. The pattern introduces cyclic dependencies between 
Mediator and Colleagues (denoted by arrows pointing in opposite 
direction). The pattern code (for updates etc.) is distributed both 
over Mediator and all Colleagues. 
In the AspectJ implementation (Figure 8, right), the indirection 
introduced by the ConcreteMediator aspect removes the cyclic 
dependencies. The aspect defines the participants, assigns the roles 
and identifies which points in the execution trigger updates. 
Colleagues do not have to have any pattern-related code in them, 
they are “freed” of the pattern. Changes to the pattern (for 
example, the notification interface) are limited to a single module 

(the aspect). Again, an abstract aspect (here: MediatorProtocol) 
implements generalizable parts of the pattern. 

5.3 Crosscutting structure of design patterns 
This section presents the origins of crosscutting structure in the 
patterns and shows that the observed benefits of using AspectJ in 
pattern implementation correlate with crosscutting in the pattern.  
Roles define the behavior and functionality of participants in a 
pattern. Examples of such roles are Component, Leaf and 
Composite for the Composite pattern, Subject and Observer for the 
Observer pattern, or Abstract- and ConcreteFactory for the 
Abstract Factory pattern. Crosscutting in pattern structure is caused 
by different kinds of roles and their interaction with participant 
classes. 
In some patterns, the roles are defining: the participants have no 
functionality outside the pattern. That is, the roles define the 
participants completely. Objects that play the Façade role, for 
example, provide a unified interface to a subsystem and (usually) 
have no other behavior of their own. Defining roles often include a 
client-accessible interface. 
In other patterns, the roles are superimposed: they are assigned to 
classes that have functionality and responsibility outside the pattern. 
In the Observer pattern for example, the classes that play  Subject 
and Observer do more than just fulfilling the pattern requirements. 
In a GUI context, Subjects could be widgets, for example. In other 
words, classes that have behavior outside the Observer pattern 
context. The Subject role is thus only an augmentation of the 
already existing class. Superimposed roles usually do not have a 
client-accessible interface. 
In object-oriented programming, defining roles are often realized by 
subclassing an abstract superclass to achieve different but related 
behaviors; superimposed roles are often interfaces that define 
behavior and responsibilities.4 

                                                             
4 There is a misalignment in Java in that methods on a superimposed 

role may only be intended for use by the pattern, but they have to 
be defined on an interface, which require they be public. 
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Figure 8: Dependencies and (pattern) code distribution in a typical instance of the Mediator pattern for Java (left) and AspectJ 

(right) implementations. The AspectJ implementation removes cyclic dependencies and localizes the pattern code. 



5.3.1 Roles and crosscutting 
Superimposed roles lead to three different kinds of crosscutting 
among patterns and participants: 

• Roles can crosscut participant classes. That is, for 1 role, 
there can be n classes, and 1 class can have n roles; i.e. 
the Subject role as shown in Figure 5. 

• Conceptual operations of interest can crosscut methods in 
one or more classes. That is, for one conceptual operation 
there can be n methods, and 1 method can be in n 
conceptual operations; i.e. the subjectChange 
operations triggering an Observer update as shown in 
Figure 5. 

• Roles from multiple patterns can crosscut each other with 
respect to classes and/or methods. That is, 2 classes that 
pattern A sees as part of 1 role, pattern B may see as in 
more than 1 role, and vice versa. The same is true for 
conceptual operations; i.e. Subject role and 
subjectChange operations as shown in Figure 9. 

Table 1 shows that the types of roles a pattern introduces and the 
observed benefits of an AspectJ implementation correlate. The 
design patterns can be divided into three groups: those with only 
defining roles, those with both kinds of roles and those with only 
superimposed roles. The table shows that while the AspectJ 
implementations of the patterns in first group show no 
improvements, patterns from the last group show improvements in 
all modularity benefit categories we identified. For patterns that 
have both kinds of roles, the results are dependent on the particular 
pattern. 
Given that AspectJ is intended to modularize crosscutting structure, 
this result should not be surprising. It says that patterns that involve 
primarily crosscutting structure are well modularized in an AspectJ 
implementation. (Note that AspectJ does not remove the 
crosscutting of the pattern, but rather provides mechanisms to 
modularize that structure.) 

5.3.2 A predictive model? 
The tight correlation between pattern roles, the crosscutting a 
pattern introduces, and the observed benefits of an AspectJ 
implementation suggest a predictive model of the benefit from 
AspectJ implementation of a given design pattern.  

With defining roles, each unit of abstraction (class) represents a 
single concept, i.e. the functionality of a class corresponds to its role 
in the pattern. Inheritance is used to distinguish between related but 
different implementations. In such a case, transparency and 
pluggability are not useful properties, as each participant is 
inherently useful only within one particular pattern instance.  
With superimposed behavior, the situation is different. Participants 
have their own responsibilities and justification outside the pattern 
context. If we force one such class into the pattern context, we 
have – at the very least – two concerns represented by one module 
of abstraction (class): The original functionality and the pattern-
specific behavior. The resulting tangling and oftentimes code 
duplication can cause problems as the modularity is compromised. 
For these patterns and their implementations, a clean modularization 
of the pattern functionality and the original functionalities of the 
participants is desirable. In an AspectJ implementation it is usually 
possible to modularize the abstracted pattern behavior and have one 
aspect per pattern instance assign roles, conceptual operations, and 
fill in instance-specific code. Since the participants do have a 
meaning outside the pattern context, they are not inherently 
restricted to a single role or even a single pattern instance.  
This model appears to be accurate for those GoF patterns that have 
only defining or only superimposed roles. For others, the expected 
benefits seem to depend on the number of participants implementing 
a particular kind of role. Superimposed roles that map to multiple 
participants (e.g. Element in Visitor, Composite or Leaf in 
Composite) indicate potential for modularization, even if the pattern 
also includes defining roles. 

6. RELATED WORK 
There is a lot of related work focusing either on patterns beyond the 
GoF patterns, or on issues beyond those in this paper. Note that 
since our work focuses on the implementation of existing design 
patterns, we do not mention publications dealing with finding new 
patterns. In particular, related work has been done to:  

1. Investigate pattern applicability in other language 
paradigms 

2. Automate code generation for patterns, to create a design 
patterns code library, or to develop tool support for 
program design with patterns 
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Figure 9: Crosscutting caused by pattern composition. In particular, this figure shows how pattern composition introduces 

additional crosscutting by extending Figure 5 with a second pattern instance. The left illus trates how a class can play multiple 
roles, while the right shows how mapping points in program execution onto the code crosscuts the participant’s methods. 



3. Classify existing patterns in order to reduce the number of 
distinct patterns or to pinpoint inherent relationships 
between them 

4. Address the problem of design pattern composition 
5. Enhance the representation of design patterns 

6.1 Design patterns and language paradigms 
Work in this area is directly related to this paper: We investigate 
design pattern implementations in AspectJ (AOP) and compare it to 
implementations in Java (OO). 
Norvig’s work on design patterns in dynamic programming [19] 
explores impacts on the GoF design patterns when implemented in 
Lisp and/or Dylan. This work is another indicator that patterns 
depend on the language paradigm. Of the 23 patterns, he found that 
16 either become either invisible or simpler due to first-class types, 
first-class functions, macros, method combination, multimethods, or 
modules. 
Sullivan investigated the impact of a dynamic, higher-order OO 
language (Scheme with a library of functions and macros to provide 
OO facilities) on design pattern implementations [22]. In-line with 
Norvig’s work, he observed that some design pattern 
implementations disappear (if language constructs capture them), 
some stay virtually unchanged and some become simpler or have 
different focus.  
Nordberg describes how AOP and component-based development 
can help in software module dependency management [17]. In a 
different work, he views design pattern improvements from the 
point of view of indirections and shows how replacing or 
augmenting OO indirection with AOP indications can lead to better 
designs [18]. 
Kühne showed the benefits of combining programming paradigms 
via design patterns [12]. In his work, he introduces design patterns 
to integrate high-level concepts from functional programming in 
OOP. 
DemeterJ is an adaptive aspect-oriented extension to Java and 
another example of how new language constructs can make design 
patterns (as described in GoF) disappear. The Visitor design pattern 
is directly supported in DemeterJ [26]. 
A few aspect-oriented design patterns have been suggested. For 
example, Lorenz’s work describing Visitor Beans, an AOP pattern 
using JavaBeans [14], or AOP versions of particular design patterns 
as the Command pattern [20].  

6.2 Pattern libraries, parameterized patterns, 
and tool support 
Since design pattern descriptions contain information about how the 
participants interact with each other, what interfaces and variables 
they have to have, it is only natural to investigate how much of the 
design and code generation process can be automated. In many 
cases, the design patterns “essence” can be encapsulated in an 
abstract aspect and reused. These aspects can be thought of as a 
library for patterns, or as library of building blocks for systems using 
design patterns. 
Budinsky et al. [4] propose a tool for automated code generations 
from design pattern descriptions. Their tool integrates pattern code 
into existing systems using multiple inheritance. An interesting 

property of their tool is that it allows for different versions of each 
design pattern, according to the pattern descriptions in GoF. Such 
design choices are dynamically reflected in updated UML diagrams 
and changed code, so that developers can see the effects of their 
choices. 
In a paper by Florijn et al. [7] a different tool is presented that uses 
a pattern representation based on so-called fragments (see section 
6.5) that allows detecting whether a pattern does not conform to a 
particular design pattern “contract” and that can suggest 
improvements.  
A paper by Mapelsden et. al. [15] shows a CASE tool that uses 
their design pattern modeling language DPML (see section 6.5). 
The tool provides an explicit separation between design patterns, 
their instances, and object models, which a user study found 
effective in managing the use of design patterns. 
Alexandrescu’s [2] generic components offer a different approach 
to make design pattern more flexible and reusable. These 
components are reusable C++ templates that are used to create 
new pattern implementations with little recoding. In [21], Soukup 
describes a C++ library of reusable pattern implementations, which 
uses an approach quite similar to ours. To avoid invasive changes to 
existing classes, “pattern classes” are introduced, which are 
encapsulations of the pattern role implementations. These classes 
include pattern code and a description of the pattern and participants 
in a parameterized form describing the roles and which code to 
inject where. Concrete instance of a pattern are created using these 
descriptions and a special code generator. In our work, the 
functionality of the pattern classes are replaced by abstract aspects 
that encapsulate the roles and pattern behaviors. Instead of weaving 
a role-class mapping and the description to create code, a concrete 
aspect is used to assign the roles and to fit in appropriate code. 

6.3 Pattern Classification 
Based on our comparison, we classify design patterns according to 
their usage of roles, as this is what we found to affect their potential 
to benefit from an aspect-oriented implementation. 
Various works have addressed the growing number of design 
patterns and tried to classify existing patterns according to various 
characteristics. Agerbo [1] distinguishes between fundamental 
design patterns (FDPs), and language-dependent design patterns 
(LDDPs). While FDPs are not covered by any language construct 
(in any language), LDDDs have different implementations (or 
disappear completely) depending on the language used.  
Gil [10] proposes a similar classification based on the closeness of 
patterns to actual language constructs. He identifies three different 
types of patterns: clichés, idioms, and cadet patterns. Clichés are 
“common uses of prevalent mechanisms” of a particular 
programming language, idioms are language mechanisms of non-
mainstream languages, and cadet patterns are “abstraction 
mechanisms not yet incorporated in any programming language”. 
We used the reasoning that Façade is more a generally accepted 
mechanism for information hiding (a Cliché in Gil’s terminology) 
than a fully-fledged pattern to explain why it does not profit from an 
AspectJ implementation. 
Zimmer [23] investigated the relationship between patterns in 
pattern compositions. He introduces a three-layer classification of 
the GoF design pattern based on their potential role in pattern 



compositions. The different categories are “basic design patterns 
and techniques” for rudimentary patterns used in others; “design 
patterns for typical software problems” for higher-level patterns for 
more specific problems. Finally, “design patterns specific to an 
application domain” is for domain specific patterns. Compared to 
our work it appears that patterns that use other patterns in their 
solution (i.e. are higher up in the hierarchy) should introduce more 
crosscutting than others and profit more form an AspectJ 
implementation. It turns out, however, that the usage of roles is 
much more relevant for determining how crosscutting a pattern is.  

6.4 Roles and pattern composition 
Pattern composition has been shown as a challenge to applying 
design patterns. In our work, we show how coding design patterns 
as aspects can solve the modularity problems associated with 
pattern composition. 
The Role Object Pattern [3] has been introduced to deal with 
different requirements imposed on objects in different contexts. This 
approach is an OO attempt to deal with superimposed roles5. The 
separation of core functionality and role is realized by introducing 
role object fields into the core classes, which themselves share a 
high-level interface with the role classes. This creates cyclic 
references: ComponentCore stores a list of roles, and each 
ComponentRole has a reference to the core object they are 
attached to. While introducing tight coupling between core and role, 
this approach enables dynamically adding and removing roles from 
an object. Fowler [8] presents guidelines on different variations of 
the pattern and when to use them. 
Other work describes different approaches to model roles and their 
relationship to the concrete classes playing those roles. Mikkonen 
[16] formalizes them as behavioral layers (object slices). Florijn et. 
al. [7] introduces a fragment model (see below) that represents 
participant roles as a particular kind of fragments. Mapelsden et. al 
[15] differentiate explicitly between patterns, their instances, and 
object models. Their graphical notation (DMPL) allows mapping 
roles to concrete classes. Design pattern libraries and code 
generators usually introduce a means to assign pattern roles to 
concrete classes. The most commonly used tools to weave role-
related code into existing classes are multiple inheritance [1, 4, 16], 
or a dedicated weaver [21]. 

6.5 Alternative pattern representations 
This area is remotely related in that it outlines new approaches to 
design pattern notation. 
A number of papers address problems with the preciseness of the 
pattern description format presented in GoF. Lauder and Kent [13] 
introduce a hierarchical model (consisting of three layers based on 
UML notations) for describing pattern structures and dynamic 
behavior. The role model captures the “pure pattern”, and is refined 
by a type-model (similar to the GoF UML diagrams), which is in 
turn refined by an instance-specific model that uses the concrete 
names a particular pattern instance. The authors claim that the three 
models complement each other and that a developer should have 
access to all three models of a particular pattern.  

                                                             
5 In that the core classes already have defined responsibility and the 

role introduces additional responsibilities. 

Florijn et. al. [7] suggest a fragment-based representation of design 
patterns. A fragment depicts a design element such as a class, 
method or association). Patterns themselves and all elements in a 
pattern instance (classes, relationships among them, code) are 
represented as (graphs of) fragments. 
Mapelsden et. al. [15] introduce the design pattern modeling 
language DPML, built upon similar concepts as UML. This multi-
level approach (design patterns, pattern instances, and object 
models) makes it possible to show objects and their roles within the 
pattern.  
Mikkonen [16] addresses the problem that the temporal behavior of 
design patterns is difficult to reason about and proposes a formal 
notation for this purpose. This model formalizes patterns as 
behavioral layers, and realizes the interactions between objects as 
atomic actions. With this approach, pattern compositions can be 
modeled. 

7. SUMMARY 
Improvement from using AspectJ in pattern implementations is 
directly correlated to the presence of crosscutting structure in the 
patterns. This crosscutting structure arises in patterns that 
superimpose behavior on their participants. In such patterns the 
roles can crosscut participant classes, and conceptual operations 
can crosscut methods (and constructors). Multiple such patterns can 
also crosscut each other with respect to shared participants. 
The improvements manifest themselves as a set of properties 
related to modularity. The pattern implementations are more 
localized, and in a number of cases are reusable. Because the 
AspectJ solutions better align dependencies in the code with 
dependencies in the solution structure, AspectJ implementations of 
the patterns are sometimes also composable. 
Localizing pattern implementation provides inherent code 
comprehensibility benefits – the existence of a single named unit of 
pattern code makes the presence and structure of the pattern more 
explicit. In addition, it provides an anchor for improved 
documentation of the code.  
Our results suggest several directions for further experimentation, 
including applying AspectJ to more patterns, attempting to make 
systematic use of our reusable pattern implementations, and 
attempting to use AspectJ in legacy code bases that are known to 
be influenced by design pattern thinking. Another avenue for future 
work is to compare these results with the use of other aspect-
oriented techniques. 
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