
A multivariable Chinese remainder theorem

Oliver Knill

January 27, 2005

Abstract

In this note we show a multivariable version of the Chinese remainder theorem: a system of linear
modular equations ai1xi + ... + ainxn = ~bi mod ~mi, i = 1, ..., n has solutions if mi > 1 are pairwise relatively
prime and in each row, at least one matrix element aij is relatively prime to mi. The solution ~x can be
found in a parallelepiped of volume M = m1m2 · · ·mn. The Chinese remainder theorem is the special case,
where A has only one column and the parallelepiped has dimension 1 × 1 × ... × 1 × M .

1 Introduction

The Chinese remainder theorem (CRT) is one of the oldest theorems in mathematics. It was used to calculate
calendars as early as the first century AD [2, 7]. The mathematician Sun-Tsu, in the Chinese work ’Suan
Ching’ considered the problem to find the number x which satisfies

x = 2 mod 3

x = 3 mod 5

x = 2 mod 7 .

The example with solution x = 23 appeared also in a textbook of Nicomachus of Gerasa in the first century.
Linear congruences of more unknowns seem have appeared much later. Dickson [2] gives as the first reference
Schönemann, who considered in the year 1839 equations of the type a1x1 + ... + anxn = 0 mod p where p
is a prime. It was probably Gauss, who first looked at systems of n linear equations of n unknowns with
respect to different moduli ([2]).

George Mathews noted in his two volume book [5] on number theory that a system of linear equations

A~x = ~b mod ~m can be reduced to a system B~x = ~a mod m, where m = lcm(m1, ..., mn). For example, the
system

x + y = 1 mod 3

x − y = 2 mod 5

which has solution x = 3, y = 1 is equivalent to

5x + 5y = 5 mod 15

3x − 3y = 6 mod 15

However, since many results and methods developed for a single moduli do not work - like row reduction,
inversion by Cramer’s formula - there is not much gained with such a reduction. Gauss treated in his
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disquisitiones arithmetica (1801) systems of linear congruences and considered also the system

3x + 5y + z = 4 mod 12

2x + 3y + 2z = 7 mod 12

5x + y + 3z = 6 mod 12

which has the four solutions (2, 11, 3), (5, 11, 6), (8, 11, 9), (11, 11, 0) in Z3
12. The discrete parallelepiped

spanned by (3, 0, 3), (12, 0, 0), (0, 12, 0) is mapped by the linear map A bijectively to a proper subset of
� 3

12. Indeed, the matrix A over the ring
�

12 is not invertible because det(A) = 4 is not invertible in
�

12.

Figure 1. Gauss example. There is a parallelepiped in
� 3

12 which is mapped onto a proper subset of
� 3

12 by the transformation A~x mod 12. For the same matrix A, only one forth of all vectors ~b in
� 3

12

allow that A~x = ~b mod 12 can be solved. In that case, there are four solutions.

The system of Gauss can be solved by Gaussian elimination: subtracting the last row from the sum of
the first two gives 7y = 5 mod 12 or y = 11. We end up with the system

3x + z = 9 mod 12

5x + 3z = 7 mod 12

Eliminating x gives 4z = 0 mod 12 or z = 0 mod 3 which leads to the 4 solutions z = 0, 3, 6, 9. In each
case, the solution x is determined. H.J.S. Smith noted in 1859 that if all moduli are the same m and det(A)

is relatively prime to m, then A~x = ~b mod m has a unique solution in the module
� n

m over the ring
�

m.
Indeed, Cramers rule gives the explicit solution ~xi = det(A~b,i

)det(A)−1 in which the determinant det(A) is

inverted in
�

m and A~b,i is the matrix in which the i’th column had been replaced by ~b.

Systems of linear modular equations had been treated in the 18’th century, but mainly in the case when
all moduli mi are equal. The general case can be reduced to the case when the moduli are all powers of
prime numbers with the equivalence of each equation a1x1 + ... + anxn = b mod qk1

1 · · · qkl

l to

a1x1 + ... + anxn = b mod qk1

1

. . .

a1x1 + ... + anxn = b mod qkl

l .

The general case can also be reduced to the case when all moduli are equal but most results known in the
equal moduli case do not catch after the reduction. For example, in that case, the determinant of the new
matrix is zero in

�
m. As in the CRT, we can not do row-reduction with different moduli in general.
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Beside the aim to find the structure of the solutions of a system of modular linear equations, there is
also the computational task, which asks to find solutions and a minimal parallelepiped in

� n
M on which A is

injective as a map to
�

m1
× ...×

�
mn

. There is the problem of complexity: how many computation steps are
needed to decide whether a system has a solution and how many steps are required to find it? The earliest
and only reference we were able to find which addresses the question is [3], where the problem is dealt with
the method of quantifier elimination in discretely valued fields.

Our approach here is elementary and generalizes the approach to the CRT, in which solutions can be
found in {0, ..., M − 1}, which can also be interpreted as a parallelepiped of length M = m1m2 · · ·mn and
width dimensions of length 1.

Despite the elementary nature of the problem, there are questions which need to be studied more. There
is the computational problem to find the kernel effectively and the general complexity problem to decide
effectively, when a general system A~x = ~b mod ~m has a solution and when not. The efficiency part is
especially relevant in cryptological context like in lattice attacks [4], where one tries to reconstruct the keys
from several messages.

2 A multivariable Chinese Remainder Theorem

We consider linear systems of equations A~x = ~b mod ~m, where A is an integer n × n matrix and ~b, ~m are
integer vectors with coefficients mi > 1. Written out, the system of equations is

a11x1 + ... + a1nxn = b1 mod m1

. . .

an1x1 + ... + annxn = bn mod mn

The problem is to find a maximal lattice LA in
� n, which is the kernel of the group homomorphism ~x 7→ A~x

from
� n to the module Y =

�
m1

× ... ×
�

mn
so that its fundamental region X is mapped bijectively

onto AX ⊂ Y, then to decide whether ~b is in AX and if affirmative, to construct ~x ∈ X which satisfies
A~x = ~b mod ~m. There are cases, where one can give the answer quickly:

1) If all moduli mi are equal to a prime m = p, the problem can be solved using linear algebra over
the finite field Fp. As noted first 150 years ago, if m is not prime, but the determinant of the matrix A is
invertible in the ring

�
m, then the problem can be solved for all ~b.

2) If A has only one nonzero column, the problem is the Chinese remainder theorem (CRT). It is one of
the first topics which appear in any introduction to number theory.

For which A and ~m are there solutions to the general linear system for all ~b? The following result is a
generalization of the CRT:

Theorem 2.1 (Multivariable CRT) If mi > 1 are pairwise relatively prime and in each row, at least

one matrix element is relatively prime to mi, then A~x = ~b mod ~m has solutions for all ~b. In that case, the
solution ~x can be found in an n-dimensional parallelepiped X =

� n
M/L of volume M = m1 · · ·mn, where L

is a lattice in
� n

M .

Remarks:
1) The lattice L is not unique in general. For example, if the lattice spanned by ~v1, ..., ~vn, then it is also
spanned by ~v1 + ~v2, ~v2, ..., ~vn and the volume is the same.
2) The two conditions for solvabilty are necessary in general, as examples below show.
3) The parallelepiped can be very long. An extreme case is the CRT situation, where it has length M =
m1m2 · · ·mn and all other widths are 1.
4) It would be useful to have criteria which assure that the parallelepiped has a small diameter. If A is
unimodular, the eigenvalues of A are relevant.
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5) A modern formulation of the CRT is that for pairwise coprime elements m1, ..., mn in a principal ideal
domain R (or Euclidean domain), the map x mod M → (x mod m1, ..., x mod mn) is an isomorphism
between the rings R/(m1R) × R/(mnR) and R/(MR). Using the same language, the multivariable CRT
can be restarted that if R is a principal ideal domain and a ring homomorphism A : Rn → Rn, for which
the i′th row of A is not zero in R/(qiR) with factors qi > 1 of mi, there is a lattice L in Rn such that A is
a ring isomorphism between Rn/L and R/(m1R) × · · · × R/(mnR). When seen in such an algebraic frame
work, the result is quite transparent and might be ”well known”. The multivariable CRT could well have
entered as a homework in an algebra text book, but we were unable to locate such a place yet. Also a search
through number theory text books could not reveal the statement of the multivariable CRT.
6) While the problem of systems of linear modular equations A~x = ~b mod ~m with different moduli mi

certainly is elementary, the lack of linear algebra and group theory could explain why it had not been
studied 2000 years ago by Chinese or Greek mathematicians. The problem has the CRT as a special case
and can be understood and solved without linear algebra. Indeed, one of the proofs of the CRT essentially
goes over to the multivariable CRT. But the constructive aspect of finding L and effectively inverting φ is
interesting and much more difficult than in the special case of the CRT.
7) There is unique solution to systems of modular equations if and only if there is a line A(t~v)mod~m which
covers the entire torus Y =

�
m1

× · · · ×
�

mn
. If ~v is known, then it reduces the multivariable CRT problem

to a CRT problem.

Figure 2. With a curve ~r(t) = t~v such that A~r(t) mod ~m covers the entire discrete torus Y, the
multivariable CRT is reduced to the CRT. Most vectors ~v will work, if there is exactly one solution. The
reason is that most vectors ~w = A~v mod ~m have the property that the curve t ~w covers the entire torus.

3 Examples

Let us look at the equations A~x = ~b mod ~m in some examples, where n = 2 and ~m = (p, q) has the property
that p, q are relatively prime. Unlike in the situation ~m = (p, p) with prime p, where the solution can be
found in the fixed algebra over the finite field

�
p, it does now not matter in general, how singular the matrix

A is. But the decision known from linear algebra about solvabilty, unique solvabilty or non-solvabilty has
still to be made.

Systems of modular equations have either a unique solution, no solution or finitely many solutions. In
the third case, the number of solutions is a factor of M = m1 · · · · · mn.
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Example 1:

x + y = 1 mod 3

x − y = 2 mod 5

To a given solution like ~x = (3, 1), we can add solutions of the homogeneous equation A~x0 = ~0 like

(2, 7), (3, 3), (−1, 4), (1, 11). This is an example, where solutions exist for all vectors ~b. The curve ~x(t) =
(3t, t)mod p reduces the problem to the CRT case

4t = 1 mod 3

2t = 2 mod 5

which can be solved for t.

Example 2:

2x + 3y = 6 mod 7

−3x − 9y = 3 mod 12

This is an example, where the existence of integer solution (x, y) depends on the vector ~b. The above example
has a solution. The system

2x + 3y = 1 mod 7

−3x − 9y = 1 mod 12

has no solution. In the set
�

7 ×
�

12 with 84 elements, we count 28 vectors ~b for which there is a solution
and 56 elements, for which there is no solution.

Example 3:

6x − 4y = 7 mod 7

10x − 5y = 1 mod 5

There is no solution because the second equation reads 0 = 1 modulo 5. However, for a different ~b like

6x − 4y = 2 mod 7

10x − 5y = 5 mod 5

we have a solution ~x = (1, 1). In the set
�

7 ×
�

5 with 35 elements, only 7 vectors ~b give a system with a
solution.

Example 4:

x + y = 1 mod 3

x + y = 2 mod 5

This system can be reduced to a case of the CRT case:

z = 1 mod 3

z = 2 mod 5 .

and is solved for z = 7. In the set
�

3 ×
�

5 with 15 elements, every vector ~b has a unique solution z. The
original system has now solutions like ~x = (1, 6) or ~x = (2, 5).

Example 5: The size of the lattice L in
� n

M can vary when ~m is fixed. Here is a case with a relatively
narrow lattice spanned by the vectors (1,−3), (43, 14):
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6x − 2y = 0 mod 11

11x − 5y = 0 mod 13

The extreme case is the CRT case, where the lattice has dimensions 143 × 1:

6x − 3y = 0 mod 11

12x − 6y = 0 mod 13 .

Next, we look now at examples of general cases, where the moduli mi are not necessarily pairwise prime:

a) A case for linear algebra.
If ~m = (m1, ..., mn) = (p, ..., p), where p is a prime number, we have a linear system of equations over the

finite field Fp. This is a problem of linear algebra, where solutions can be found by Gaussian elimination or
by inverting the matrix. If the determinant of A is nonzero in the field

�
p, then A−1 exists and x = A−1y.

For example, with p = 11, solving A~x = ~b mod ~m:

[

2 1 2
1 2 9
1 2 7

][

x
y
z

]

=

[

1
2
3

]

mod 11

is done in the same way as over the field of real numbers. The determinant is 5 modulo p = 11 so that the

matrix is invertible over Fp. The inverse of A in Fp is A−1 =

[

8 6 1
7 9 10
0 6 5

]

and A−1~b =

[

1
0
5

]

. Indeed

~x =

[

1
0
5

]

solves the original system of equations.

b) The case of the Chinese reminder theorem.
If the matrix A has only one nonzero column, we are in the CRT situation. This problem was considered

2000 years ago and was given its final form by Euler. For example,







0 2 0 0 0
0 3 0 0 0
0 1 0 0 0
0 9 0 0 0













x1

x2

x3

x4







=







5
8
11
9







mod







3
11
7
13







is equivalent to

2x = 5 mod 3

3x = 8 mod 11

x = 11 mod 7

9x = 9 mod 13 .

Let us describe, how the CRT problem aix = bi mod mi is solved in a geometric language: with an
integer ”time” parameter t and the ”velocity” ~v = (v1, ..., vn), the parameterized curve ~r(t) = t~v mod ~m is a
line on the ”discrete torus” Y =

�
m1

× · · · ×
�

mn
. It covers the entire torus if the integers mi are pairwise

relatively prime and ai 6= 0 mod mi. One can solve the task of hitting a specific point ~b on the torus by
solving the first equation v1x1 = b1 mod m1, then consider the curve v1(x1 + m1t), reducing the problem to
a similar problem in one dimension less. Proceeding like this leads to the solution.

The solution for the CRT was easy to find, because the group was Abelian. The strategy to retreat in
larger and larger centralizer subgroups is also the key to navigate around in non-Abelian finite groups like
the ”Rubik cube”, where one first fixes a part of the cube and then tries to construct words in the finitely
presented group which fixe that subgroup. It is a natural idea which puzzle-solvers without mathematical
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training come up with. By the way, also the Gaussian elimination process is an incarnation of this principle.
1

Figure 3. Solving problems in nonlinear groups use the evolved ideas from the Abelian case. In
the CRT, the Abelian group

� n acts on the finite group
�

m1
× ... ×

�
mn

. In the Rubik cube, the
free group F6 acts on a finite group. In both cases, the problem can be solved effectively by finding
actions which fix a smaller subgroup, then solve the problem in the smaller subgroup. A popular
solution to the Rubik cube first fixes the top layer of the cube, then uses moves in the centralizer group
which fixes the top layer to fix the second layer, finally uses word combinations which fix the top two layers.

c) The case of independent equations.
If A is a diagonal matrix we have n independent equations of the form aixi = bi mod mi. Solutions exist

if gcd(ai, mi) = 1 for all i. If gcd(a, m) > 1 like a = 3, p = 6, there are no solutions of 3x = 2 mod 6 as can
be seen by inspecting the equation modulo 3. Example:

A~x =







2 0 0 0
0 3 0 0
0 0 5 0
0 0 0 7













x1

x2

x3

x4







=







5
8
11
9







mod







3
11
7
13







= ~b mod ~m .

d) A case, where row reduction works.
If A is upper triangular or lower triangular matrix, the system can be solved by successively solving

systems aix = bi mod mi. Again, we have solutions if gcd(ai, mi) = 1 for all i.

A~x =







2 1 1 0
0 3 2 1
0 0 5 1
0 0 0 7













x1

x2

x3

x4







=







5
8
11
9







mod







3
11
7
13







= ~b mod ~m .

e) The case when A is modular.

If A−1 has only integer entries, solutions can be obtained directly with the formula x = A−1~b in
� n.

This works if A is modular that is if A has determinant 1 or −1.

Example:

A~x =

[

5 3 4
1 4 1
5 2 4

][

x
y
z

]

=

[

1
2
3

]

mod

[

5
7
11

]

= ~b mod ~m .

We get

[

x
y
z

]

= A−1

[

1
2
3

]

=

[

14 −4 −13
1 0 −1

−18 5 17

][

1
2
3

]

=

[

−33
−2
43

]

.

1As a graduate student, I had participated in a contest in the Swiss town of Bern. A ”Rubik cube” type puzzle, the ”master
ball” had to be solved competitively in front of a larger audience. The task had been to race doing a specific transposition in that
group. Having been trained at ETH in algebra and theoretical computer science also been a course assistant in a course using
computer algebra, I had used the computer algebra system Cayley (now Magma) to find a solution and assigned a Sun workstation
to tackle the problem. After a few hours, it came up with a solution which consisted of several dozen moves. I brought this solution
to the competition: after all the contestants had been introduced, we went on to race who would solve the puzzle first. The fastest
solver was a farmer and cheese-maker from Emmental. Without computers and without any knowledge in group theory, he had
the best understanding to walk around in that non-Abelian group. This event happened before the movie ”Good Will Hunting”
appeared and is no fiction.
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4 Proof of the multivariable CRT

Note that in general, row operations as used in Gaussian elimination are not permitted to solve the problem
A~x = ~b mod ~m because each row is an equation in a different ring of integers. But the geometric solution of
the CRT can be generalized to solve the general case as well as to locate small solution vectors.

Let us prove the multivariable CRT: Assume gcd(mi, mj) = 1 for all i 6= j and if for all i = 1, ..., n, there

exists j such that gcd(aij , mi) = 1. We show that there is a solution ~x to the linear system A~x = ~b mod ~m

for all ~b. The solution ~x is unique in a parallelepiped spanned by n vectors. This parallelepiped contains
M = m1m2 · · ·mn lattice points.

I. Existence.
The map φ : x → Ax mod ~m is a group homomorphism from X =

� n to the finite group Y =
�

m1
× · · · ×

�
mn

= Y/L, where L = (m1
�

) × ... × (mn

�
) is a subgroup of Y . We think of Y as a discrete torus with

M = m1 ·...·mn lattice points. We can think of the order M of the group also as the ”volume” of the torus Y.

The kernel of φ is a subgroup LA of X and X = X/LA. The image of φ is a subgroup of Y. By the first
isomorphism theorem in group theory, the quotient group X and the image are isomorphic.

The kernel LA is a lattice in X spanned by n vectors ~k1, . . . , ~kn. We think of the quotient X = X/LA as
a ”discrete torus” with ”volume” |X |.

By definition, φ is injective on X . By Lagranges theorem in group theory, there exist finitely many

vectors ~yi ∈ Y such that
⋃d(A)

i=1
A(X ) + ~yi = Y and d(A)vol(X ) = vol(Y). The problem is solvable for all

~b if and only if d(A) = 1. In that case, for every ~b, there exists a unique integer vector ~x in X such that

A~x = ~b mod ~m. we will solve A~x = ~b mod ~m constructively.

Figure 4. The map φ is a bijection between the two finite sets (X) =
� n/L and Y =

�
m1

× ... ×
�

mn
.

The picture visualizes the linear system

4x + 17y = 2 mod 5

11x + 13y = 1 mod 19

which has the solution (x, y) = (8, 5). The vectors (11−, 2), (−2, 9) span the lattice of the kernel.

II. Construction In order to construct a solution of A~x = ~b mod ~m. we have to find both the lattice LA
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and a particular solution ~x of the equation A~x = ~b mod ~m, then reduce x modulo the lattice to make it small.

i) Finding a particular solution
To find the particular solution, we pick Pivot elements aij(k) in the matrix A: these are entries in the i’th
row which are relatively prime to mi. Let ~ej denote the standard basis in n-dimensional space.

Consider a line ~x(t) = t~ej(1) in X, where t is an integer. Using the assumption on the rows, we see that
there exists an integer t1 so that ~x(t) solves the first equation.

Now take the line ~x(t) = t1~ej(1) + tm1~ej(2). There is an integer t2 so that ~x(t) solves the second equation.
We use the fact that m1 is relatively prime to m2. Note that ~x(t) solves the first equation for all t.

Now continue in the same way until we find the final solution ~x(t) =
∑

ti(m1...mi)~eij(i).

Remark: Because X and Y are isomorphic groups, there is a one-dimensional line ~r(t) = t~v such that
~r(t)/LA covers Y. We could find a special solution by searching on that line, which is a problem of the CRT.
We have the problem to find a vector ~v such that A~r(t) = A(t~v) = t ~w covers the entire set Y.

Example:

4x + 17y = 2 mod 5

11x + 13y = 1 mod 19

Because all moduli are prime, any nonzero matrix element is a Pivot element in this example. Lets pick

j(1) = 1, j(2) = 2. We first look at the line ~x(t) = t~e1 =

[

t
0

]

. We look for t1 such that the first equation

is solved. This means 4x = 2 mod 5 which gives x = 3.

Now consider the line ~x(t) = 3~e1 + 5t~e2 =

[

3
5t

]

. For every t, the first equation is solved. The second

equation gives 33 + 65t = 1 mod 19. which is solved by t = 15. So, ~x(1) =

[

3
75

]

solves the system.

We could have solved the system also by taking the parametrized line ~r(t) = (x(t), y(t) = (t, t) which is
mapped by A to the line (A~r(t)) = (11t, 25t) = (t, 5t) on the discrete torus. It leads to the CRT problem

t = 2 mod 5

5t = 1 mod 19

which is solved for t = 42 so that we get the particular solution (x, y) = ~r(42) = (42, 210).

ii) Finding the kernel.
On every line ~r(t) = (0, ..., t, ...0), there is a point ~x which solves A~x = ~0 mod ~m. By the pigeon hole prin-
ciple, the set {A~x mod ~m | t ∈ [0, M ]} must hit some point in the image twice. But then A(~x−~y) = ~0 mod ~m.

If we take n + 1 equations A~x(i) = y(i) mod ~m, then the collection of vectors y(i) is linearly dependent.
Therefore, there exist rational numbers ci such that

∑

j
cjy

(j) = ~0 mod ~m so that
∑

j
cj~x

(j) = ~0 is in the
kernel. After multiplying with a common multiple of the denominators of the rational numbers cj , we can
assume cj to be integers.

We first look for n linearly independent vectors ~ki solving A~ki = ~0 mod ~m. Define K to be a matrix
which contains the vectors ~ki as row vectors.
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We use the LLL algorithm ([1] section 2.6) to reduce the lattice to a small lattice. It turns out that this
is often not good enough. The lattice has a size which is a multiple of p. In order to find the lattice LA of
the kernel, we need

det(K) = M = m1m2 · · ·mn .

Let k = det(A)/p and let k = q1...ql be the prime factorization of k. We can now look whether ~y(i)/qj

are integer vectors in the kernel for each i = 1, ..., n and j = 1, ..., l and if yes replace the basis vectors.
Successive reduction of the lattice can lead us to the kernel for which det(K) = p. If not, we start all over
and construct a new lattice.

5 Related topics and open questions

a) Iteration of modular linear maps.
The map T (~x) = A~x mod ~m defines a dynamical system on the finite group

�
m1

× ... ×
�

mn
. Since the

discrete torus Y does not match with the torus X , orbits on this finite set behave rather irregular. The
system can be extended to the real torus � /(m1

�
) × � /(mn

�
), where it is in general a hyperbolic map.

The orbits behave differently, if A is very singular, for example if A has only one column.

Example: The map

T

[

x
y

]

=

[

31x + 34y
3x + 38y

]

mod

[

7
17

]

has 6 different orbits on Y with a maximal orbit length of 49. It seems difficult to find ergodic examples
with different moduli where ergodic means that there is only one orbit besides the trivial orbit of ~0 = (0, 0)
a case which appears for example in

T

[

x
y

]

=

[

18x + 5y
7x + 14y

]

mod

[

37
37

]

b) Systems of modular polynomial equations
The algorithm to solve systems of linear modular equations extends also to solve systems of polynomial
equations ~P (~x) = ~b mod ~m

P1(x1, ..., xn) = b1 mod m1

P2(x1, ..., xn) = b2 mod m2

. . .

Pn(x1, ..., xn) = bn mod mn

too, but in general, we do not have criteria which assure that such a system has solution. Start solv-
ing the first equation. Using ~x = (a11t, ..., a1nt) we have to solve a problem q1(t) = 0 mod m1, where
q1 is a polynomial. If we find a solution t1, try to solve the second equation for t when using ~x =
(m1a21t, .., mna2nt) + (a11t1, ..., a1nt1). which solve the first equation etc.

For example, consider the system of nonlinear modular equations

x2 + y3 + z2 = 1 mod 5

x3 + 2y4 − z2 = 1 mod 7

3x − 2y3 + 5z4 = 7 mod 11

Start with the ”Ansatz” (x, y, z) = (t, t, t). The first equation is t2(2+t) = 1 mod 5 which has the solution
t = 2. Now put (x, y, z) = (2, 2, 2) + t · 5(1, 1, 1) which solves the first equation and plug it into the second
equation. This is (2+5t)2(2+3t+t2) = 1 mod7 and solved for t = 0. The point (2, 2, 2)+t(5, 5, 5) = (2, 2, 2)
solves also the second equation. Now plug-in (2, 2, 2) + 5 × 7(0, 2t, t), which solves the first two equations
for all t, into the third equation which requires to solve 6 + 5(2 + 35t)4 − 2(2 + 70t)3 = 7 mod 11 which
is equivalent to 4 + 4t + 2t2 + 5t3 + 3t4 = 7 mod 11 and solved for t = 1. So, the final solution found is
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(2, 2, 2) + 5 · 7(0, 2, 1) = (2, 72, 37). This method does not necessarily find small solutions like (2, 6, 4).

Nonlinear systems of modular equations with different moduli but with one variable can be treated with
the CRT. Ore [6]) illustrates it with the example

x3 − 2x + 3 = 0 mod 7

2x2 = 3 mod 15

Because the first equation has solutions x = 2 mod 7 and the second has solutions x = ±3 mod 15, we are
in the case of the CRT. In general, for systems of polynomial equations in one variable, we are lead to many
cases of CRT problems.

c) Finding the kernel efficiently

To find the kernel of the group homomorphism T (~x) = A~x mod ~m, we produce a large set of solutions
of T (~x) = 0 and then reduce this to a small lattice using the LLL algorithm. Let H be the matrix which
contains the reduced kernel vectors as columns. Then AH = ~0 mod ~m. In general, det(H) 6= M , but we
know that there exists a kernel for which det(H) = M . How do we find such a matrix H directly?

d) The decision problem.

To decide whether A~x = ~b mod ~m has a solution or not is addressed in [3]. The multivariable CRT
gives a criterion for the existence of solutions. One can often detect, whether one of the equations has no
solution. This happens for example, if ai1, ..., ain, mi have a common denominator which is not shared by
the denominators of bi. If all mi are equal to some number m with distinct prime factors can make a fast
decision: by the CRT, a solution exists if and only if a solution exists modulo each prime factor of m and
the later decisions can be done by computing determinants in finite fields.
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