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ABSTRACT

The quality of medical decision-making and public health planning alike depends directly upon understanding 

the accuracy of medical tests, especially during a pandemic. But the statistical concepts and measures used to 

assess test accuracy can be confusing. Why is there not one single definitive measure of test accuracy? How 

much should individuals worry about spreading COVID-19 if their test results are negative? What do 

sensitivity, specificity, false positive results, false negative results, and positive predictive value mean relative 

to each other? In this tutorial, we clarify the meaning of these terms in intuitive ways via visual illustrations, 

and explain how these terms are all connected to one another through Bayes’ theorem. We show how to use the 

relationships in that theorem to assess personal risk when large numbers of people are being tested. We 

illustrate as well the extent to which the accuracy of large numbers of tests depends on the proportion of those 

tested who have the disease. Overall, we aim to heighten a general intuition regarding the performance of mass 

medical testing campaigns. Here, toward that end, we review different ways to measure the accuracy of 

diagnostic tests with reference to pandemic-specific examples.

Keywords: medical testing, diagnostic testing, sensitivity, specificity, positive predictive value, false positives

1. Introduction: The Vocabulary of Outbreaks
The COVID-19 pandemic caused a massive spike in the broad-scale, government-implemented diagnostic 

testing of large numbers of people. Researchers and officials have used the data generated by such testing 

programs to highlight two important numbers: namely, those showing the incidence and prevalence of the 

disease. The incidence describes how many new cases occurred in a recent time period, for example, the past 

week. The prevalence describes how many people are currently infected right now. Prevalence may be larger 

than incidence as it includes new cases from the past week but also individuals who were infected during the 

prior week and have not yet recovered. Important though these two numbers are, however, they are only part of 

a larger story that can be difficult for researchers, health workers, and the general public to fully understand.

The planning of broad-scale testing programs is challenging to implement, and the results can be challenging to 

interpret. To begin with, the task of making sense of test reports at the individual, regional, national, and 

international levels requires connecting different types of data, different types of tests, and different 

assessments of test performance. Beyond that, the terminology used in this context can present obstacles. For 

example, press reports detailing the results of broad-scale testing programs often rely on words such as 

‘sensitivity’ and ‘specificity,’ which connote ‘accuracy’ in everyday usage. But in epidemiologic reports that 

describe the performance of testing programs, sensitivity and specificity have different, specialized meanings. 

Hence, sorting through statements regarding test performance in varied media can be difficult, especially when 
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seemingly counterintuitive results are quoted without much explanation. Two recent examples vividly 

demonstrate this challenge:

“You might think any test with 95 percent sensitivity and 95 percent specificity would be highly accurate. 

But while these would be great grades on an organic chemistry final, the ability of such a test to render a 

reliable result is extremely poor: 50 percent of the positive results would not be true positives, Dr. 

Osterholm said. (You’ll have to take my word for this—explaining the statistics would require half a 

column!)” (Brody, 2020)

“The CDC explains why testing can be wrong so often. A lot has to do with how common the virus is in 

the population being tested. ‘For example, in a population where the prevalence is 5%, a test with 90% 

sensitivity and 95% specificity will yield a positive predictive value of 49%. In other words, less than 

half of those testing positive will truly have antibodies,’ the CDC said.…Alternatively, the same test in a 

population with an antibody prevalence exceeding 52% will yield a positive predictive value greater than 

95%, meaning that less than one in 20 people testing positive will have a false positive test result.” (CNN 

Wire, 2020.)

Both press reports make true but confusing statements, and implicitly prompt questions. How can a test with 

two measures of performance at or above 90% be wrong more than half the time? Constraints on space and 

scope in popular media rarely allow writers and readers to develop insight or build intuition into why these 

seemingly counterintuitive associations occur. It is no wonder that nonexperts may end up being confused. 

Indeed, even statisticians and epidemiologists familiar with terms such as sensitivity and specificity often 

struggle to explain them to colleagues and friends.

Here, we aim to provide definitions and examples to illustrate the relationships between epidemiologic terms 

such as sensitivity, specificity, and prevalence. These relationships are important for the design and assessment 

of testing strategies, programs, and protocols. Building intuition around how and why certain strategies work 

well (or not) is critical for monitoring the ongoing pandemic, communicating results on current status, and 

targeting vaccine rollout to areas of high incidence and prevalence. Misunderstanding or miscommunicating 

testing results can result in inefficiencies at best and increased mortality at worst.

In considering the examples below, we suggest keeping two key questions in mind regarding any reported 

percentage: ‘What question does that percentage answer?’ and ‘From what population is the percentage taken?’ 

We consider first the impact of decisions regarding who is tested on the numbers of cases reported. Next, we 

consider the main qualities of an ‘accurate’ test (that is, sensitivity and specificity), and explain how and why 

these qualities are related.
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2. Patterns in Data Reflect Patterns of Disease and Patterns of 
Testing
Through daily reports on the number of individuals testing positive for COVID-19, public health surveillance 

provides critical information regarding which absolute counts of infection, hospitalization, and death are 

increasing, which are leveling off, and which are declining. Surveillance data typically come from a variety of 

sources, including testing, hospital records, and mortality records. The regional and temporal patterns observed 

in combined surveillance data pertain not only to infection but also to varied modes of reporting and testing, 

such as what types of data are included, which individuals are tested, how quickly regions and hospitals report 

data, and whether the separate data elements cover similar time periods.

When an individual is tested for an infectious disease, the test result typically determines whether a person has 

or does not have evidence of infection. Some diagnostic tests report whether the individual is currently 

infected, and others test for antibodies or other clues that the individual was infected in the past. When we add 

up results for individuals at the regional or national levels, it is important to consider the patterns of testing and 

of the testing results. Early in the pandemic, when resources were scarce, testing focused on individuals with 

symptoms, those with known contacts with infected individuals, and frontline health care workers.

Patterns of tested individuals within a given city/region/state/country reflected local decisions and priorities for 

testing: specifically, which tests were most important for making critical decisions at that point in time in that 

region? For example, when local tests were limited and the policy goal was to identify the number of severe 

cases that then currently required or would soon require hospitalization, the testing of asymptomatic 

individuals may have been viewed as less of a priority than the rapid identification of severe cases and contact 

tracing.

In this scenario of limited testing, the (appropriate) focus of tests on those with severe symptoms can result in 

selection bias with respect to simple estimation of the proportion of population currently infected via the 

proportion of positive tests among those tested. As an example, suppose a clinic has 10 remaining test kits and 

20 people waiting to be tested, seven of whom currently have a high fever and are short of breath (symptoms 

suggestive of COVID-19). For simplicity, suppose the other 13 patients are not infected. In order to prioritize 

treatment for the sickest individuals, we would assign the first seven remaining COVID-19 tests to these seven 

symptomatic individuals and then test three of the remaining individuals. If seven of the 10 tests were positive 

for COVID-19, the percent testing positive would be 70% (seven positives out of 10 tests); however, only 

seven out of 20 people in line (35%, seven infected out of 20 people) were actually infected. In this example, 

the individuals with severe symptoms were (again, appropriately at the time) more likely to be tested and more 

likely to be positive, yielding a proportion of positive tests much higher than the proportion of infected 

individuals. Here, as elsewhere, accuracy in understanding and reporting the proportions of positive tests 

would have required reporting the number of positives out of the number tested and reporting the priorities by 

which individuals were chosen to be tested.



Harvard Data Science Review • Special Issue 1: COVID-19:
Unprecedented Challenges and Chances

Building Intuition Regarding the Statistical Behavior of Mass Medical
Testing Programs

5

As tests became more available over the course of the pandemic, policy goals shifted to the assessment of what 

proportion of the regional population was infected at a given time (the current prevalence of the disease, 

including both new and ongoing infections). Generally speaking, to avoid selection bias, the most accurate 

estimates of current prevalence should involve testing a random sample of the population containing both 

infected individuals and uninfected individuals. The proportion of sampled individuals who are infected would 

then accurately reflect the proportion of infected individuals in the population (the prevalence). Very few 

efforts were put in place to develop national- or state-level sampling-based estimations of infection prevalence. 

And, eventually, as tests became more widely available, the goal shifted from testing random individuals in a 

resource-limited environment to testing everyone in particular settings when testing had become more widely 

available (e.g., on university campuses, the state of Georgia, the U.S. military). Some public health researchers 

extended these ideas and proposed even broader proposals for mass application of rapid tests.

At the national or international level, these changing goals led to a global map of information influenced by 

different patterns of testing in different areas. In order to facilitate accurate interpretation of changing local 

prevalence values over time, analysts, decision makers, and the interested public need to understand these 

shifting priorities for testing and data collection over the course of the pandemic.

3. What Are the Qualities of an ‘Accurate’ Test?
Diagnostic tests are not perfect. Some uninfected people will have positive test results. Such results are referred 

to as ‘false positive results’ or ‘false positives.’ In addition, some infected people will have negative test results, 

referred to as ‘false negatives.’ In this context, we can observe one of four outcomes. Two of these are correct 

outcomes:

The other two possibilities reflect different types of incorrect outcomes:

An ‘accurate’ test will have a high proportion of correct outcomes and low proportions of each type of 

incorrect outcome. But in practice, a low proportion of false positives does not necessarily mean a low 

proportion of false negatives. As an extreme example, suppose we have a test that always reports a positive 

result, regardless of whether the tested individual is infected or not. Such a test would have no false negative 

results, but it would be a useless and, indeed, harmful test. The same would be true of a second test that always 

reports a negative result. These two examples suggest the need for some sort of balance between the risks of 

different types of incorrect outcomes.

A true positive test result: an infected individual has a positive test.

A true negative test result: an uninfected individual has a negative test.

A false negative test result: an infected individual has a negative test.

A false positive test result: an uninfected individual has a positive test.

https://www.ajc.com/news/state--regional-govt--politics/with-more-virus-test-supplies-kemp-urges-all-georgians-screened/eC9sNh6Yck2aLncOU8wuFP/
https://www.military.com/daily-news/2020/05/31/pentagon-begins-testing-troops-covid-19-antibodies-despite-cdc-warnings.html
https://www.theatlantic.com/health/archive/2020/08/how-to-test-every-american-for-covid-19-every-day/615217/
https://www.nytimes.com/2020/08/06/health/rapid-Covid-tests.html
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Different measurements of the performance of a diagnostic test focus on different aspects of test performance 

such as the proportion of false positive or false negative results; no single measure captures the full set of 

performance characteristics we desire in a good diagnostic test. The examples of the always-positive or always-

negative tests considered here provide examples of tests with wonderful (perfect!) performance on one 

measure, and terrible performance on the other.

Specific definitions of test performance based on the proportion of false positives or the proportion of false 

negatives appear in many biostatistics and epidemiology textbooks. These are often used as examples 

introducing Bayes’ theorem, a key mathematical formula from probability theory that can be used to define the 

relationships between the different measures of testing accuracy (McGrayne, 2018). Bayes theorem is 

presented as a ‘gotcha’ homework problem in introductory biostatistics and epidemiology classes to show 

students how some very common intuitions about probability are actually very wrong. Here, rather than present 

the theorem first as an equation to explain associations between different measures of test accuracy, we will 

instead begin by illustrating the associations through examples and then summarizing these with the theorem.

Probability abounds with confusing examples and seeming ‘paradoxes,’ which is why gambling is a profitable 

venture for the house. Many of these paradoxes result in a difference between what we want to happen (for 

example, ‘I think this slot machine is due for a payout’), and what the randomization mechanism driving 

outcomes actually generates (each spin is equally likely to pay out). The setting of mass testing is no different. 

We want a test with good properties in one arena to be good in another. As a result, we often attempt to 

attribute good results in one subset of performance measures to the rest.

4. Illustrations With COVID-19 Testing
To better understand different measures of test performance and their interrelationships, we consider the 

example of two broad types of testing for COVID-19. The first type of test is used to identify an active 

infection by extracting RNA, converting it into complementary DNA, and assessing whether that DNA (but no 

other) can be amplified using a technique called real-time polymerase chain reaction. A second type of tests 

seeks biological markers of immunity within an individual due to prior exposure rather than an active infection 

by assessing the presence of antibodies to the virus. The latter test (often referred to as the ‘antibody test’) led 

some federal and state government officials to propose that mass antibody testing can identify those who have 

been infected and are presumably immune and safe to return to work (Mukherjee, 2020). (See CDC Guidance 

on Antibody Testing,). In short, the RNA test determines if the individual is currently infected and the antibody 

test determines if an individual has been infected in the past. Additional rapid testing approaches continue to be 

under active development. For ease of description in the sections below, we focus on the antibody test, 

although the concepts apply to tests of current infection as well.

The first antibody test approved for emergency use by the Food and Drug Administration (FDA) was made by 

Cellex. Cellex's test reports a sensitivity of 93.8% and a specificity of 95.6%. We use these values to define and 

https://fortune.com/2020/05/27/antibody-test-coronavirus-covid-19-cdc-return-to-work-testing-immunity/
https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html
https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html
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interpret these two summaries of test performance.

In the definitions below, we consider several different proportions of different subpopulations. The key to 

keeping the definitions straight is tracking which subpopulations go with which measures of performance. We 

note that this is easier said than done.

To begin, the sensitivity of the antibody test is the probability that a person tests positive  given they have 

COVID-19 antibodies, which can be written as a conditional probability: (where we read “

” as an individual tests positive  given that they indeed are “disease positive” , that is, they 

have antibodies). For the antibody test, sensitivity answers the question: What proportion of individuals test 

positive among the subpopulation of individuals with antibodies? In other words, how often is the test correct 

for people who have antibodies? 

A sensitivity of 93.8% sounds very good since it means that only 6.2% (100% – 93.8%) of people who actually 

had COVID-19 receive a (false) negative test result. This 6.2% represents the proportion of tested individuals 

with antibodies who would falsely presume that they are still susceptible and take unnecessary care not to 

become infected (e.g., stay out of work when in fact they could safely return if long-term immunity holds).

Next, specificity is the probability that a person tests negative ( ) given that they are ‘disease negative’ (

), denoted as . Specificity answers the question: What proportion of people test negative among the 

subpopulation of healthy people? In other words, how often is the test correct for people who don’t have 

antibodies?

A specificity of 95.6% indicates that only 4.4% (100.0% – 95.6%) of ‘healthy’ people (who don’t have 

protective antibodies and are still susceptible) would receive a (false) positive test. In the setting of the COVID-

19 antibody test, this seeks to address the question, ‘Have I been infected in the past?’ In this case, 4.4% of the 

healthy population would falsely assume that they have immunity due to prior infection with the virus when, in 

fact, they are still susceptible.

What do sensitivity and specificity tell us about how one should interpret a positive test result? Since the 

sensitivity is high, most people receiving a positive antibody test result would assume that they are positive and 

immune to COVID-19. Recall that sensitivity measures the proportion of people testing positive in the 

subpopulation of people who are positive (have antibodies), that is,  However, a person who just 

received a positive test result wants to know the proportion of people who are indeed positive among the 

subpopulation of people with positive tests, that is, they want to know 

In this example, what you know (my test is positive) and what you wish to know (do I have antibodies?) are 

reversed from the definition of sensitivity given above. In probability terminology, we say that the conditioning 

is reversed, and as such answers a different question. The probability you are positive given that you test 

(T )+
Pr[T ∣D ] + +

T ∣D+ + (T )+ (D )+

T− D−
Pr[T ∣D ]− −

Pr[T ∣D ].+ +

Pr[D ∣T ].+ +
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positive can be written as  and is called the positive predictive value, which reverses the 

conditioning from sensitivity, .

Similarly, the negative predictive value, the proportion of individuals with negative tests who are, in fact, 

negative can be written as . This reverses the conditioning from the specificity, , the 

proportion of individuals who are in fact negative who receive negative test results.

The conditional relationships of which proportion is taken from which subpopulation is particularly confusing 

for two other terms used to describe the performance of mass diagnostic testing. The false discovery rate, 

denoted as , defines the proportion of people with positive tests who are negative. This reverses 

the conditioning from the false positive proportion, denoted , defined by the proportion of people 

who are negative but receive positive test results. In sum, the false discovery rate describes the proportion of 

‘discoveries’ (positive tests) that are false (occur in healthy people), while the false positive proportion 

describes the proportion of healthy people who receive (false) positive test results. The first is a proportion of 

positive tests; the second is a proportion of healthy people.

4.1. Illustration 1: Grouping by Antibodies or Grouping by Test Results?

As noted above, keeping track of which term refers to which proportion of which subpopulation is a challenge, 

even for experienced statisticians and epidemiologists! To help clarify the situation, consider Figure 1 (building 

on similar figures in McKenna, 2020). Here, figures with red heads truly have the disease ( ) and figures 

with blue heads are healthy ( ). The squares held by each figure represent a piece of paper with that 

individual’s test result. Red squares denote a positive test result ( ) and blue squares denote a negative test 

result ( ). Note that there are four possibilities and that all combinations can occur (positive people can 

receive positive or negative tests and negative people can receive positive or negative tests). To keep things 

straightforward in this hypothetical example, suppose we use a test with 80% sensitivity and 90% specificity 

(actual COVID-19 tests typically have higher values). Supposing we test 10 people with the disease (red heads) 

and 10 people without the disease (blue heads), we see that sensitivity represents a proportion among people 

with the disease and specificity represents a proportion among healthy people. That is, sensitivity and specificity

 are defined by a proportion among individuals grouped by their true disease status. In contrast, if we rearrange 

these same 20 people’s tests (10 with the disease and 10 healthy) by the test results they received (nine total 

positive tests and 11 total negative tests) we see that the positive predictive value, the false discovery rate, and 

the proportion of false negatives are all defined as proportions among individuals with the same test outcome.

Figure 1 clarifies that the terms used to define test performance are based on different subpopulations of 

interest. As noted above, sensitivity defines a proportion of individuals among the subpopulation who ‘are 

positive’, that is, they truly have antibodies. Specificity defines a proportion of individuals among the 

subpopulation who ‘are negative,’ that is, truly don’t have antibodies. While both terms are reported as 

Pr [D ∣T ]+ +

Pr[T ∣D ]+ +

Pr[D ∣T ]− − Pr[T ∣D ]− −

Pr [D ∣T ]− +

Pr [T ∣D ]+ −

D+
D−

T+
T−
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percentages, they are percentages of different subpopulations. To further clarify these relationships, we 

summarize these terms, their definitions, and probability notation in Table 1.

Table 1. A list of terms referring to specific aspects of test performance.

Figure 1. Definitions of test outcomes when grouping individuals by health 
status (sensitivity and specificity) or by test result (positive predictive value, 
false discovery rate, and proportion of false negatives). (See text for additional 

discussion). Note. Figure updated May 17, 2021, to correct typographic error.

Term Probability notation Definition

Sensitivity Pr[T ∣D ]+ + The proportion of people who test 

positive among the subpopulation who 

are positive

False negative proportion Pr [T ∣D ]− + The proportion of people who test 

negative among the subpopulation who 

are positive.

Note: Since sensitivity and the false negative proportion are proportions of the same population and since individuals either test positive or test negative, 

sensitivity + false negative proportion = 100%

Specificity Pr[T ∣D ]− − The proportion of people who test 

negative among the subpopulation who 

are negative
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Note. Here,  and  indicate that an individual receives a positive or negative test, respectively, while and  indicate 

that an individual does or does not have the disease the test is trying to detect. The notation  indicates the conditional 

probability of A being true given B is true. We can interpret this to mean the proportion of individuals where A is true among the 

subpopulation of individuals where B is true.

Table 1 also includes the prevalence of a disease, the proportion of individuals currently having the disease. In 

assessing the performance of the PCR (population currently infected) test for COVID-19, the prevalence refers 

to the proportion of individuals currently infected among those tested (including new and existing cases), while 

for the antibody test, the prevalence refers to the total proportion of individuals who currently have antibodies. 

In a mass testing situation, the prevalence is defined to be the proportion among those tested. This may be 

different from the proportion of the entire population with antibodies due to testing priorities and strategies. 

This clarification is necessary since, as discussed above, COVID-19 tests are allocated based on testing 

priorities, due to local resources, availability, and access.

The prevalence of a disease in the tested population affects the associations between sensitivity, specificity, and 

positive predictive value. While we typically think of sensitivity and specificity as properties of a particular 

False positive proportion Pr [T ∣D ]+ − The proportion of people who test 

positive among the subpopulation who 

are negative.

Note: Since specificity and the false positive proportion are proportions of the same population and since individuals either test positive or test negative, 

specificity + false positive proportion = 100%

Positive Predictive Value Pr [D ∣T ]+ + The proportion of people who are 

positive among the subpopulation who 

test positive.

False discovery rate Pr [D ∣T ]− + The proportion of people who are 

negative among the subpopulation who 

test positive.

Note: Since positive predictive value and the false discovery rate are proportions of the same population and since individuals either are positive or are 

negative, positive predictive value + false discovery rate = 100%

Negative Predictive Value Pr [D ∣T ]− − The proportion of people who are 

negative among the subpopulation who 

test negative.

Prevalence Pr [D ]+ The proportion who are positive across 

the entire population tested.

 T+ T− D+ D−
Pr [A∣B]
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test, in a large-scale mass testing setting their relationships to each other change with the background 

prevalence of disease. These relationships change because prevalence changes the relative sizes of the 

subpopulations defining each measure of test performance.

To illustrate this connection, note that in Figure 1 we earlier assumed a prevalence of 50% in those tested (we 

had 10 red heads with antibodies and 10 blue heads without antibodies). Now, consider Figure 2 where we 

apply the same tests (80% sensitivity and 90% specificity) to a prevalence of 20% in the tested population (10 

red heads with antibodies and 50 blue heads without antibodies). As before, we first arrange people by disease 

status (people with antibodies together and people without antibodies together), then we have the same people 

rearrange themselves by test result (positive tests together and negative test together).

When we rearrange by test result, we find that the positive predictive value has changed from 88.9% in Figure 

1 to 61.5% (only 8 out of 13 positive tests occur in people with antibodies). As we test more people without 

antibodies, the number of false positive test results begins to increase. The percentage of positive tests in 

individuals without antibodies remains the same, but since we are testing many more people without 

antibodies, the number of such false positive test results increases. If we were to test even more people without 

antibodies (say, 100, 1,000, or 1,000,000) but still tested 10 people with antibodies (that is if the prevalence of 

people with antibodies decreases in the tested population), at some point we could (and would) observe more 

false positives (positive test results in people without antibodies) than we would observe true positives 

(positive test results in people with antibodies)!

Figure 2. Definitions of test outcomes in a lower prevalence setting than 
Figure 1. Individuals remain grouped by health status (sensitivity and specificity) or 

by test result (positive predictive value, false discovery rate, and false negative rate). 
(See text for additional discussion).
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Figures 1 and 2 suggest that there is a specific relationship linking sensitivity, specificity, positive predictive 

value, and prevalence of the disease within the tested population. The figures suggest that the key to 

understanding the relationship among these quantities depends on how we group people into subpopulations, 

the relative sizes of these subpopulations, and the proportions of incorrect tests within each subpopulation. We 

next use three separate but related descriptions ranging from conceptual to mathematical to illustrate these 

relationships in more detail. Each example provides a bit more insight into the interrelationships and their 

relevance to better design, implementation, and understanding of the results for large-scale diagnostic testing.

4.2. Illustration 2: Tracking Possible Outcomes

As a next step, we move away from the simplified settings of Figures 1 and 2, and consider examples with 

prevalence, sensitivity, and specificity closer to examples arising from COVID-19.

Our goal is to track all of the possible outcomes of testing that could happen and arrange these in a ‘tree’ or 

flowchart of possible events (Figure 3). The branches on the flow chart provide more detail on subgrouping 

than we showed in Figures 1 and 2.

To better match local testing for COVID-19, consider a population of 10,000 people tested with a true 

prevalence (proportion of individuals who are antibody positive among those tested) of only 1%, similar to 

values early in the pandemic. Here, this means that 1% of the population tested previously had COVID-19 and 

has antibodies. The prevalence can be expressed probabilistically as  = 0.01, in which case  = 

0.99. These add to 100% since each individual either does ( ) or does not have antibodies  Of the 

original 10,000 people, the prevalence means 100 individuals are truly positive and so 9,900 are truly negative. 

An antibody testing sensitivity of 93.8% means about 94 of these 100  individuals will (properly) receive a 

positive test result. (Recall that sensitivity is a proportion of those who truly have the antibodies.) The 

specificity of 95.6% means that 9,464 of the 9,900 negative individuals will (properly) receive negative test 

results. Only 4.4% of truly negative individuals will receive false alarms and test positive, but this corresponds 

to 4.4% out of a large number (9,900) of negative people. The result is 436 people are falsely told that they 

have antibodies to the disease and are presumably immune (but in fact are not). The proportion of positive tests 

that are true positives is then the 94 true positive tests divided by the total number of positive test results (true 

and false). As noted above, this quantity, , gives the positive predictive value and equals 0.18 

(Figure 1C). Similarly, the false discovery rate, or , is 0.82. Thus, at the 1% prevalence level, only 

18% of people who test positive will actually be positive, and 82% of people who test positive and think they 

have antibodies will be wrong!

Pr D[ + ] Pr D[ − ]

D+ (D ).−

D+

Pr [D ∣T ]+ +

Pr [D ∣T ]− +
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While Figure 3 tracks all of the possible outcomes, the results above could be summarized into a single 

sentence such as: ‘A test with sensitivity of 93.8% and specificity of 95.6%, when applied to a low-prevalence 

population, can yield a positive predictive value of only 18%!’ As we mentioned in the introduction, similar 

sentences have frequently appeared in press coverage of COVID-19 testing. Based on our discussions so far, 

we can start to see how to explain the truth hidden in such a statement. The key is to note that the sentence lists 

three percentages representing proportions of three different subpopulations (those with antibodies, those 

without antibodies, and those testing positive, respectively). This key is apparent only if the definitions of the 

proportions defining sensitivity, specificity, and positive predictive values are known and readily at hand for all 

readers.

The example in Figure 3 demonstrates that most people who receive a positive test result can be negative if the 

prevalence is low in the tested population. This reinforces the suggestion from Figures 1 and 2 that the impact 

of the background prevalence, , is essential to understanding the performance of a mass testing 

campaign.

Figure 3. A tree of possible events. (A) Events delineated based on probability 
notation and epidemiological terms. (B) The expected distribution of 10,000 people 

through this tree of events when prevalence is 1%, sensitivity is 93.8%, and 
specificity is 95.6% (based on specifications of the first antibody test to achieve 

Food and Drug Administration [FDA] emergency use authorization). The 
probabilities and numbers can be used to calculate (C) the positive predictive value, 

and (D) the false discovery rate.

Pr [D ]+
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Why would this matter? For some diseases, a false positive result simply results in a healthy person receiving 

an unnecessary treatment. If the treatment is not too toxic, then this is not particularly consequential. However, 

in the case of COVID-19, where prevalence among the tested was small early in the pandemic, the association 

between the different test criteria can be critical. If the prevalence of the disease among those tested is very 

small, we see that the majority of people who test positive for antibodies will falsely think that they are 

immune. Under this mistaken assumption, they may leave themselves open to the risk of severe disease and 

death, as well as maintaining transmission among the general public.

In order to provide insight on how decisions regarding whom to test can influence the performance of a mass 

testing strategy, we recall that the prevalence represents the proportion of individuals tested who have 

antibodies. If individuals are selected from the general public in a random sample (such that every person is 

equally likely to be tested), then the prevalence in the tested population will be a close approximation to the 

overall prevalence in the antibodies in the general population. If, however, we focus testing on individuals who 

have had close contact with infected individuals, the prevalence in the tested population will be higher than the 

prevalence in the general population and our positive predictive value will improve. While we may not know 

the precise prevalence in the general population, we may exercise some control over the prevalence in the 

tested population by focusing on tests for higher risk individuals.

Next, we examine how sensitivity and specificity affect the relationship between prevalence among those 

tested and the positive predictive value of a test.

4.3. Illustration 3: How Prevalence Changes Positive Predictive Value

To clarify the impact of prevalence on the positive predictive value, we extend the COVID-19 example used in 

Figure 3 for prevalence ranging from 0% to 100%. In Figure 4, we plot the positive predictive value (the 

probability that an individual has antibodies given their test was positive) against the prevalence among tested 

individuals. The dark line represents the relationship for sensitivity of 93.8% and a specificity of 95.6% (the 

values from our COVID-19 examples above). There is a sharp decrease in the positive predictive value as the 

prevalence among the tested population drops (Figure 4A). Next, we redraw this relationship with a new curve 

for increasing values of sensitivity. We see that the positive predictive value is almost completely unchanged as 

we increase sensitivity from 93.8% to 95%, 96%, 97%, 98%, and 99% (overlapping red lines in Figure 4B). 

The blue lines in Figure 4C, however, show that changes in specificity from 95.6% to 96%, 97%, 98%, to 99% 

lead to substantially higher positive predictive values at any given prevalence value.

This example demonstrates that we can maintain a better positive predictive value for the tested population if: 

(1) we focus a testing program on those at higher risk (that is, we aim to have a higher prevalence of antibodies 

among the tested individuals than we would if we tested at random) and (2) if we increase test specificity (that 

is, if we have a choice between different tests, we choose the one with higher specificity). The plots also show 

that the positive predictive value is relatively unaffected by changes in test sensitivity.
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The curves in Figure 4 further stress the critical role of prevalence in assessing the performance of a mass 

testing campaign. Ongoing, sampling-based prevalence estimates can (and should) provide improved 

situational awareness of the proportion of the population currently infected (for PCR tests) or infected 

sometime in the past (antibody tests). However, assuming the absence of such surveillance-based estimates of 

the current level of COVID-19 prevalence at the national or local levels, Figure 4 still provides important 

information for planning and expectations of performance for population-level testing because it illustrates the 

impact of changes in sensitivity and specificity for any value of prevalence. For example, if the best 

information suggests a prevalence (current or past) of 5 to 10%, we can examine the relationships in Figure 4 

across this range to gain insight on the performance of the testing program.

5. The Formulas Behind the Figures
As mentioned above, the probability tool defining the relationships between our testing performance measures 

is Bayes’ theorem, best understood as a consequence of the mathematical definition of conditional probability. 

Figure 4. The relationship between the prevalence of antibodies among those 
tested and the positive predictive value. In (A), we see increasing positive 

predictive value with increasing prevalence (prevalence of 1% to 5% indicated by 
vertical dashed lines. In (B), we see the minimal impact of increasing sensitivity from 
95% to 99% (red lines). In (C), we see the improvement in positive predictive value 

associated with increasing specificity from 96% to 99% (blue lines).
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First notice that the joint probability that someone both is positive and tests positive  can be 

written as the probability of being positive given a positive test  multiplied by the probability of 

receiving a positive test independent of your antibody status . This relationship can be written as

Similarly, the joint probability of being positive and testing positive can be written as,

Setting these expressions equal to each other (since ) and using a 

little algebra, we find

This formula can be expressed using the epidemiological terms for test performance as follows: the positive 

predictive value ( ) is proportional to the sensitivity ( ) multiplied by the prevalence 

of antibodies among those tested ( ). The denominator, is the probability that a randomly 

selected person receives a positive test, which can be calculated as the probability of a positive test for the 

people who test positive and are positive plus the probability of a positive test for people who test positive and 

aren't. In the notation above, this can be written as,

Taken together, we have

where False Positive Proportion is 1 – Specificity (Table 1). Using the Cellex antibody test values for 

sensitivity (93.8%) and specificity (95.6%) and assuming a prevalence of 1%, we can place the appropriate 

values into Bayes’ theorem to obtain

which is the same result we calculated in Illustration 21 by following the tree of possible outcomes (Figure 

3C). Thus, whether by tracing possible outcomes or by considering conditional probability and implementing 

Bayes rule, 82% of people who test positive for COVID-19 would be false positives (1 – 0.18) if the 

prevalence among those tests was 1%. By changing prevalence values, Bayes’ theorem provides the values to 

graph the curves in Figures 4A, 4B, and 4C in Illustration 3.

Pr [D  AND T ]+ +

Pr D  T ][ + ∣ +

Pr [T ]+

Pr [D  AND T ] =  + + Pr D  T ] Pr[T ].[ +∣ + +

Pr [T  AND D ] =  + + Pr  [T ∣D ] Pr[D ].+ + +

Pr [T  AND D ] =+ + Pr[D  AND T ]+ +

P r D  T ] =[ +∣ + Pr T .[ +]
Pr  [T ∣D ] Pr[D ]+ + +

Pr D  T ][ + ∣ + Pr[T ∣D ]+ +

Pr[D ]+ Pr [T ], +

Pr [T ] =+ Pr  [T ∣D ] Pr[D ]+Pr T D Pr D  .+ + + [ +∣ −] [ −]

Positive Predictive Value =
Sensitivity × Prevalence + False Positive Proportion× (1 − Prevalence)

Sensitivity × Prevalence

Pr [D ∣T ] =+ + =0.938 × 0.01+0.044 × 0.99
0.938 × 0.01 0.18,
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6. Discussion
The descriptions above illustrate concepts, graphs, and formulas summarizing the challenges of different but 

related measures of diagnostic performance in a large-scale, mass diagnostic testing program. Given these 

challenges, we must take care when reading, writing, and understanding descriptions of testing systems to 

frame issues in terms of the specific questions answered and to consider how sensitivity and specificity relate 

to the expected proportions of results in different subpopulations. Claims, reports, and manuscripts that deal 

with testing systems must be considered in the context of the prevalence of the relevant outcome of interest, for 

example, current levels of infection (PCR tests) or antibodies (antibody tests) within the tested population.

For example, when we read statements such as ‘the test is 99% accurate’ we should immediately think of two 

questions: (1) How does the author define ‘accurate’? and (2) ‘99%’ of which subpopulation? If ‘99% accurate’ 

refers to individuals with positive disease status (antibodies or active infection), then ‘accurate’ refers to 

sensitivity. If ‘99% accurate’ instead is for individuals without negative disease status, then ‘accurate’ refers to 

specificity. We have seen above that these are two important but different qualities that lead to two different 

interpretations of the statement.

The connections between sensitivity, specificity, positive predictive value, false discovery rate, and prevalence 

are essential for understanding the performance of testing strategies. The illustrations here show that if the 

prevalence of the disease among those tested is small, the small proportions of false results from tests with 

seemingly high specificity can result in low positive predictive values. Taken cumulatively, the examples show 

that this occurs because a small percentage of false positive results can result in a large number of false 

positive results if we are testing a large number of individuals without the outcome of interest (low 

prevalence). This issue is not something we can remove with adjusted calculations but is, in a sense, ‘baked in’ 

to mass testing settings.

The impact of prevalence on mass testing programs sometimes is referred to as the ‘base-rate fallacy’ (where 

the base-rate corresponds to the prevalence among those tested) and has a long history in the diagnostic testing 

literature (Bar-Hillel, 1980). When designing a mass testing system, we can protect against this problem to 

some degree by choosing tests with higher specificity or by opting to test a greater proportion of those likely to 

have the disease (for example, testing those with confirmed contacts with infected individuals) thereby yielding 

a higher prevalence among tested individuals (Service, 2020; Watson & Whiting, 2020; Woloshin et al., 2020). 

Other adjustments in practice include multistage testing wherein all positive tests are followed up by a second 

round of testing. By focusing the second round of testing on only those with positive results in the first round, 

we are effectively testing a subgroup with higher prevalence, with the effect that each round can improve in 

performance. Such approaches have been implemented in many university settings where positive antigen tests 

are followed up with ‘more accurate’ PCR tests that have higher specificity.
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While our examples are based on COVID-19, the same issues arise whenever large groups of people are tested. 

For example, consider the question of whether we should extend recommendations for routine mammogram 

screening for breast cancer for women or PSA screening for prostate cancer in men to younger ages? Like most 

cancers, the prevalence of both of these types of cancer increases with age. Adding younger individuals to the 

testing pool will lower the overall prevalence in the tested population and, as seen above, will lower the 

positive predictive value of tests. These are challenging decisions: Each case detected early is important, but 

many false positives will likely sour the population on participating in screening programs.

The definitions and descriptions here provide tools for exploring what levels of prevalence in the testing 

population will provide adequate performance for both individual tests and the testing strategy in general. In 

summary, the evaluation of testing programs requires clear thinking and careful reporting. While a statement 

such as ‘Applying a test with 99% sensitivity and 95% specificity can result in over 50% false positives!’ 

makes for provocative reading, it compares different percentages of different subpopulations (individuals with 

antibodies, individuals without antibodies, and those receiving positive tests) and it omits any mention of 

prevalence. When writing, we should be very careful to specify definitions and the groups to which 

percentages refer. When reading, we should ask ‘of what?’ after every percentage, and recall the specific 

questions that each term answers as well as the specific subpopulation to which each term refers.
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