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1 Notes

These notes are not comprehensive. Namely, derivations for RC, LC, and LR
circuits are not included in this document. Those concepts are important to
know, however.

All boxed equations are on your equation sheet.
Please email me at michel.liao@systemgreen.org if you have any questions

or notice any typos.

2 Things to Practice

• Gauss’s Law applications

• Deriving charging/discharging a capacitor in an RC circuit

– Charging a Capacitor in an RC Circuit:

q = Cε− Cεe−
t

RC = Q0 −Q0e
−t
RC .

– Discharging a Capacitor in an RC Circuit:

q = Q0e
−t
RC .

• Deriving charging/discharging a capacitor in an LC circuit

• Charging RL Circuit:

If − Ife
−R

L t.

• Discharging RL Circuit:

I0e
−R

L t.

• Period for LC circuit:
2π

√
LC.

3 Electrostatics

3.1 Charge and Coulomb’s Law

3.1.1 Introduction

• The Fundamental Law of Charges says that opposite charges attract
and similar charges repel.
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• ∣∣∣F⃗E

∣∣∣ = 1

4πϵ0

∣∣∣q1q2
r2

∣∣∣ .1
• Use vector addition to solve 2-D problems.

3.1.2 Methods of Charging

• Charging by friction:

– You can rub neutral silk with a neutral glass rod, transferring elec-
trons from the rod to the silk.

• Charging by conduction/contact/touching:

– Electrons transfer when a charged object touches a neutral object.

• Charging by induction (only conductors can be charged by this process):

1. Bring a charged object close to the conductor.

2. Touch the conductor with a ground or a second conductor.

3. The conductor now has a net charge.

3.1.3 Insulators and Conductors

• Insulators impede the flow of electrons. Conductors allow electrons to
flow freely.

• Neutral insulators can polarize, causing the electrons to reorient them-
selves.

• Conductors undergo induced charge separation, where the electrons
move instead of just reorienting.

3.2 Electric Field and Electric Potential

3.2.1 Electric Field

• An electric field is created by charged objects. The field causes electric
forces on other charges.

• Diagram the electric field as if it were putting a force on a positive test
charge.

– With a negative test charge, the electric field is drawn “backwards.”
In other words, the arrows go the opposite ways.

1This equation only tells you the magnitude of the electric force. Use logic to find the
direction.
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•

E⃗ =
F⃗E

q
.

– Note that q is our test charge.

– If we substitute FE = kQq
r2 , where Q is the source charge and q is the

test charge, we get the following: E = kQ
r2 .

• Solve static-force problems in uniform electric fields by:

1. Free body diagram

2.
∑

F = 0 (in two directions if needed)

3. Algebra

• Charged particle motion through uniform fields is parabolic given an inital
velocity perpendicular to the field. Combine forces with kinematics to
solve the problem.

– Note that we can often neglect Fg because Fg ≪ FE .

3.3 Electric Potential Energy

3.3.1 Introduction

• Electric potential energy is not the same as potential difference.

• Electric potential energy is the energy stored in the arrangement of
charges.

– The negative of the work done by a conservative force (electric field)
to arrange the charges

– It’s not about an object, it’s a property of a system of objects

–

UE = qV =
1

4πϵ0

q1q2
r

.

– We can also write this as W = q∆V .

• We always talk about UE in differences. If there is no ∆, we assume
UE = 0J at infinity.

• When finding the potential energy of a system, pretend there is nothing
at first and then bring in each charge from infinity.

3.3.2 Conservation of Energy

• Electric force is a conservative force, so mechanical energy is conserved.

• Conservation of energy can be used to determine the changes in speed of
the particles in a system.
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3.4 Electric Potential

• Electric potential is measured in Volts.

– Electric potential is also called potential, potential difference, and
difference.

– It is not electric potential energy

• Potential is the amount of potential energy per unit charge that a charged
object would feel at a location.

– Scalar

– Always a comparison to the potential somewhere else (usually 0 V
at infinity)

–

∆V = −
ˆ

E⃗ · dr⃗ .

–

V =
1

4πϵ0

∑
i

qi
ri

.

– Outside of a point charge, V = k q
r .

• Equipotential lines are lines that show places that have the same po-
tential.

– The electric field is always perpendicular to equipotential lines and
points toward lower potentials.

• Positive charges go to lower potentials. Negative charges go to higher
potentials.

• When a charge moves perpendicular to a field, no work is done. When a
charge moves parallel to a field, work is done by the electric force.

• Positive charges lose potential energy when they move to a lower potential.

• Since electric force is conservative, any closed loop path requires 0 work
and 0 change in potential.

•

Ex = −dV

dx
.

– This tells us that the electric field is greatest when equipotential lines
are closer together.

• Wext force = ∆U while WE = −∆U
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3.5 Gauss’s Law

3.5.1 Introduction

• Electric flux is the amount of field lines flowing through an area.

•
Φ = E⃗ · A⃗.2,3

– Otherwise written as Φ = |E| cos θ|A|.4

•

Φ =

˛
E⃗ · dA⃗ 5.

– You often know the formula for
¸
dA, so you don’t need to evaluate

the integral.

•
Φnet =

qen
ϵ0

6.

– If the electric field lines from a charge enter and exit an object, then
the flux from that charge is 0.

• A Gaussian surface is a closed 3D surface through which flux is calcu-
lated.

3.5.2 Deriving the Electric Field a Small Distance Away from a Line
of Charge

Figure 1: A uniformly charged rod with total charge Q and length L.

2Area is a vector because it’s defined as magnitude times the normal vector (perpendicular
to the surface).

3This is not on your equation sheet, but it is a corollary of the equation below.
4This is just the definition of a dot product.
5Φ isn’t written on your equation sheet, but the RHS is.
6LHS is not on the equation sheet.
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We choose our Gaussian surface to be a cylinder to exploit symmetry. We know
Φend caps = 0 because it’s perpendicular to E⃗. So, we can just evaluate the flux
through the side of the cylinder:

Φside =
qen
ϵ0

E(2πx�l) =
λ�l

ϵ0

E⃗ =
Q

L(πϵ0x)
■

3.5.3 Deriving the Electric Field a Small Distance Away from a Uni-
formly Charged Plate

Figure 2: A flat plane with total charge Q distributed uniformly over a plate of
area A.

We choose our Gaussian surface to be a rectangular prism to exploit symmetry.
Note that only the ends of the rectangular prism contribute to the net flux.

Φend =
qen
ϵ0

2Φend =
qen
ϵ0

2Ea =
σa

ϵ0
7

E =
Q

2ϵ0A
■

3.5.4 Deriving the Electric Field a Small Distance Away from a
Charged Insulating Sphere

We have to split this problem up into two regions: inside of the sphere and
outside of the sphere.
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We start with the outside of the sphere. We choose a Gaussian surface to
be a sphere to exploit symmetry.

Figure 3: A sphere of radius R and charge Q and Gaussian sphere of radius r.

Φ =
qen
ϵ0

E(4πr2) =
Q

ϵ0

E =
Q

4πϵ0r2
= k

Q

r2
8

Now, we can work no the inside of the sphere. We choose a Gaussian surface
to be a sphere to exploit symmetry.

Figure 4: A sphere of radius R and charge Q and Gaussian sphere of radius r.

Φ =
qen
ϵ0

E(4πr2) =
qen
ϵ0
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But qen isn’t as easy to find. We know that ρ = dq
dV . So, we can arrange and

integrate as so:

qen =

ˆ Vr

V=0

ρ dV.

Figure 5: dV is represented by a concentric shell of thickness dr.

Think of dV as a concentric shell with thickness dr. We take each shell and
make it bigger and bigger until its radius matches the radius we want. So,

dV = 4πr2 dr.

qen =

ˆ Vr

V=0

ρ dV

=

ˆ r

r=0

ρ(4πr2) dr

= ρ 4π

ˆ r

r=0

r2 dr

qen =
4πr3 ρ

3
=

Qr

4πϵ0R3

Note that we assumed ρ is constant, but it could be a non-constant function of
r.

∗ ∗ ∗

We have an inner sphere of radius R uniformly charged with charge +Q. An
outer conducting shell is placed around it with an inner radius 2R and outer
radius 3R and charge +q.

Nothing changes if we’re inside the inner sphere or between the sphere and
the shell because Φ = qen

r . Remember that E = 0 inside the shell because it’s a
conductor.

When we’re outside of the shell, though, things change.
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Figure 6: Caption

˛
E · dA =

qen
ϵ0

E(4πr2) =
Q+ q

ϵ0

E =
k(Q+ q)

4πϵ0r2
■

3.6 Fields and Potentials for Other Charge Distributions

3.6.1 Dipole

A dipole is formed when a positive and negative charge are close together.
We’ll try to find the net electric field at x.

Figure 7: Two particles are located on the y-axis at y = ±a.

We start with the positive charge. We know that E = kq
r2 . Then, we plug in
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r2 to get

E1 =
kq

a2 + x2

(
x√

a2 + x2
x̂− a√

a2 + x2
ŷ

)
=

kqx

(a2 + x2)
3
2

x̂− kqa

(a2 + x2)
3
2

ŷ.

Similarly, for the negative charge, we have that

E2 =
k(−q)x

(a2 + x2)
3
2

x̂+
k(−q)a

(a2 + x2)
3
2

ŷ.

Then, we find the net electric field to be

E = 0x̂− 2kqa

(a2 + x2)
3
2

ŷ.

3.6.2 Charged Rod

Figure 8: A charged rod of length L lies horizontally a distance A from the
origin.

Every infinitesimally small portion of charge dq causes an electric field dE.
Then, we have the following:

dE⃗ =
k dq⃗ r̂

r2

E⃗ =

ˆ L+A

x=A

−k dq

r2
x̂

λ =
Q

L
=

dq

dx

E =

ˆ L+A

x=A

−kλ dx

x2
x̂

E = kλ

(
1

L+A
− 1

A

)
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3.6.3 Uniformly Charged Semi-circle

Figure 9: A quarter circle of radius R is uniformly charged with a total charge
Q.

By symmetry, the y-components of the electric field cancels out. Then, we find
the x-component as follows:

dE =
k dq

r2
(− cos θx̂− sin θŷ)

Ex =

ˆ 5
4π

θ= 3
4π

k dq

R2
(− cos θ) =

k

R2

ˆ 5
4π

θ= 3
4π

dq(− cos θ)

λ =
Q

2πR/4
=

dq

dl
9 =

dq

dθ R

Ex =
kλ

R

√
2.

We can find the potential at the origin, too:

V =

ˆ 5
4π

θ= 3
4π

k

R
dq

= kλ

ˆ 5
4π

θ= 3
4π

dθ

=
kλπ

2
.

13



4 Conductors, Capacitors, Dielectrics

4.1 Electrostatics with Conductors

• Electrostatic equilibrium occurs when excess charge spreads on the
surface of a conductor until there is no more movement of charge.

– Any excess charge resides on the surface.10

– The electric field inside the conductor is zero.

– The electric potential inside the conductor is constant and equal to
the potential at the surface.

– The electric field just outside the surface is perpendicular to the
surface.

∗ For irregularly shaped conductors, this can tell you where the
electric field is greatest (places where surfaces curve the most).

• Conductors are materials that have many free electrons.

– According to concept of shielding, in the presence of an external
electric field, charges on the surface of a conductor will move until
any charges outside the conductor do not affect the electric field inside
the conductor.

•

∆V = −
ˆ

E⃗ · dr⃗ .

4.1.1 Touching Two Conducting Spheres

Figure 10: Two conducting spheres are connected with a wire.

We know that Va = Vb because the wire makes the two conducting spheres
functionally a big conductor that’s shaped weirdly. Knowing that will solve
most of these problems.

10Charges only spread out evenly if the conductor is a sphere.
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4.2 Capacitors

4.2.1 Introduction

• A capacitor is a device that stores and transforms electric potential en-
ergy. Capacitance is measured in Farads (F ).

•

∆V =
Q

C
.

•

C =
κϵ0A

d
.

•

UC =
1

2
Q∆V =

1

2
C(∆V )2 .

•

Ex = −dV

dx
.

•

uE =
ϵ0E

2

2
.

– uE stands for the energy density in an electric field in a vacuum

– uE ∝ E2.

4.3 Dielectrics

• Dielectrics increase capacitance.

Figure 11: Dielectric placed between two parallel plates. The molecules within
the dielectric align with the external electric field.

• When putting a dielectric into a capacitor and a battery is connected,
energy increases because the battery supplies it.

15



• When putting a dielectric into a capacitor and a battery is not connected,
energy decreases because the capacitor does work to pull in the dielectric.

• Remember conservation of energy!

• Combine C = kε0A
d , Q = CV , V = Ed, and U = 1

2QV = 1
2CV 2 together

to solve many MCQs.

5 Electric Circuits

5.1 Current and Resistance

5.1.1 Simple Circuits & Ohm’s Law

• Conventions say that positive charges move out the positive end of the
battery (even though electrons are the ones moving).

• Current is the number of charges that pass through in a given unit of
time.

– I = ∆Q
∆t = dQ

dt .

– Measured in Amperes (A).

• Voltmeters show potential difference, so they are attached parallel.

• Ammeters show current, so they are attached in series.

• Ohm’s Law:

I =
∆V

R
.

– Only applies for Ohmic devices (follows Ohm’s Law).

5.1.2 Current

• In a metal wire, there are lots of free electrons which can move if there’s
a potential difference across the wire.

Figure 12: A metal wire of length l experiences a potential difference.

– The electrons feel an electric force Fe and should accelerate, but don’t
because it collides with the lattice electrons (atoms fixed in place).

16



– So vdrift(vavg) is constant and depends on thermal properties of the
wire.

– J = N
Unit Volume ·e ·vdrift, where J is current density, N is the number

of charges allowed to flow (free charges), and e is the value of each
charge.

– Then,

I = JA = NevdA .

• Electrons flow in the opposite direction of current11.

•
E⃗ = ρJ⃗ ,

where ρ is resistivity and J is the current density.

– J = I
A .

5.1.3 Resistance & Resistivity

• Resistivity refers to the number of collisions an electron has as it travels
through a wire. It refers to a material’s ability to resist flow.

•

R =
ρl

A
.

• ρ = 1
C .

• The brightness of a bulb depends on the power it dissipates (and the
potential difference).

5.2 Current, Resistance, and Power

•
P = I∆V .

– You can combine this with Ohm’s Law: ∆V = IR.

– Power’s units is Watts.

– It’s useful to combine with P = dE
dt = ∆E

∆t .

11Because of conventional current and Ben Franklin.
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5.3 Steady-State Direct-Current Circuits

• A series circuit gives only one path for current.

–

Rs =
∑
i

Ri .

– Current remains constant throughout a series circuit. Charge is con-
served because there is only one path.

– Voltage drops across each resistor in a series circuit.

• A parallel circuit gives multiple paths for current.

–
1

Rp
=

∑
i

1

Ri
.

– Current will split according to ∆V = IR.

– Voltage stays the same in a parallel circuit.

• Redraw circuit diagrams with equivalent resistors.

5.3.1 Kirchhoff’s Laws

• Use for circuits that have more than one battery or that cannot be reduced
to a single loop by combining series and parallel arrangements.

1. The sum of current into and out of a junction is zero:
∑

junction I = 0.

• We define into a junction as positive (+) and out as negative (-).

2. The sum of voltage in a closed loop is zero:
∑

closed loop V = 0.

• If loop and current are in same direction, voltage drop. If loop and voltage
are in opposite directions, voltage rise. If exiting the positive terminal of
a battery, voltage rise. If exiting the negative terminal, voltage drop.

18



5.3.2 Internal Resistance

Figure 13: Battery with emf ϵ and internal resistance r.

•

• You can find the internal resistance r of the battery with a Kirchhoff loop
that goes from terminal to terminal.

5.4 Capacitors in Circuits

•
1

Cs
=

∑
i

1

Cs
.

– Capacitors in series have the same charge Q = CeqVsource.

– Capacitors in series divide the voltage from the voltage source ac-
cording to V = Q

Ci
.

•
Cp =

∑
i

Ci .

– Capacitors in parallel have the same voltage.

– The charge on each parallel capacitor is determined by Q = CV.

– Parallel capacitors have a greater equivalent capacitance and greater
total charge, so they store more than capacitors in series.

• When a capacitor is initially uncharged, it acts as a wire. After a long
time, it acts like an open switch with charge.
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5.4.1 RC Circuits

• The time constant τ is the time for a value to rise/fall to 1
e of the original

value.

–
τ = RC12.

6 Magnetic Fields

6.1 Forces on Moving Charges in Magnetic Fields

6.1.1 Introduction

• Every magnet has a North and South pole.

• Magnetism is caused by the parallel alignment of electron spins in ferro-
magnetic materials (materials containing iron).

• Magnetic material can cause domains to become aligned in non-magnetized
ferromagnetic materials.

• Outside a magnet, magnetic fields point from North to South. Inside,
magnet points South to North.

• The South magnetic pole is the North geographic pole.

• Magnetic fields are represented by B⃗ with units of Tesla (1T = N
am ) or

Gauss (1G = 1 · 10−4T ).

6.1.2 Forces on Moving Charges

• Non-magnetic materials must meet conditions before they feel a magnetic
force:

1. Must have a net charge.

2. Must be moving.

3. Direction of the movement cannot be parallel to the direction of the
magnetic field.

•
F⃗M = qv⃗ × B⃗ .

• Right Hand Rule:

– Point your fingers in the direction of the magnetic field (to South).

– Line your thumb up with the velocity of a positive particle or the
current.

12Not on the equation sheet, but should memorize.
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– Your palm is the direction of the magnetic force. (If the particle is
negative, the force goes the opposite direction.)

• When a particle is moving perpendicular to a magnetic field, we can find
its velocity as follows: ∑

F = ma

qvB =
mv2

r

r =
mv

qB

• Magnetic field never does any work on a particle because displacement
and force are perpendicular (recall W =

´
F⃗ · d⃗r).

6.2 Forces on Current-carrying Wires in Magnetic Fields

•

F⃗ =

ˆ
I d⃗l × B⃗ .

– d⃗l is a segment of wire.

– Turns into F = ILB in a wire because cross product doesn’t matter.

6.2.1 Loop of Current in Magnetic Field

•
τ = NIA×B.

– N is the number of loops of wire, A is the cross-sectional area of the
loop, I is the current in the loop, and B is the magnetic field.

– For torque, wrap your right hand in the direction of the spin and the
torque vector will be your thumb.

6.3 Fields of Long, Current-carrying Wires

•
B =

µ0I

2πr
,

where r is the distance from a point to the wire.

• Right Hand Wire Rule:

– Point your thumb in the direction of the current.

– Wrap your fingers. They will go in the direction of the magnetic field.

• To find the magnetic field at a point surrounded by wires, take the vector
sum of each magnetic field contribution.
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6.3.1 Parallel Wires

• Currents in the same direction make the wires attract. Current in opposite
directions cause the wires to repel.

6.4 Ampere’s Law and Biot-Savart Law

6.4.1 Ampere’s Law

• ˛
B⃗ · d⃗l = µ0I .

6.4.2 Magnetic Field Outside & Inside a Long, Straight, Current-
carrying Wire

Figure 14: A current-carying wire with an Ammperian loop of radius r and
clockwise direction for dl.

We first draw an Amperian loop with radius r and designate a direction for dl.
Then, we have the following:

˛
B⃗ · d⃗l = µ0I

B(2πr) = µ0I

B =
µ0I

2πr
.

Now, we can look at the inside.
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Figure 15: A current-carying wire with an Ammperian loop of radius r and
clockwise direction for dl.

We first draw an Amperian loop with radius r and designate a direction for
dl. Note that the current density is

J =
I

A
=

I

πR2
.

Then, we have the following:˛
B⃗ · d⃗l = µ0I

B(2πr) = µ0(
I

πR2
πr2)

B =
µ0Ir

2πR2
.

6.4.3 Magnetic Field Inside and Outside a Solenoid

Right Hand Rule for solenoids: Wrap your fingers in the direction of the
coils and your thumb will be the direction of the magnetic field.

Figure 16: A solenoid with a rectangular Amperian loop.

Note that Ienc = IN , where N is the number of loops and n = N
l , which is

the number of loops per length.

˛
B⃗ · d⃗l = µ0I

BABl +���BBC l +���BCDl +���BDAl = µ0Ienc

BABl = µ0Inl

BAB = µ0nI.
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BC and DA cancel because B ⊥ l. CD cancels because it’s outside of the
solenoid, which ideally feels no magnetic force.

6.4.4 Magnetic Field Inside and Outside a Coaxial Cable

We first find the magnetic field when a < r < b.

Figure 17: A coaxial cable with Amperian loop and inside and outside current
I.

Then, we have the following:

˛
B⃗ · d⃗l = µ0I

B(2πr) = µ0IB =
µ0I

2πr
.

We can go inside the inner conductor 0 < r < a.

˛
B⃗ · d⃗l = µ0I

B(2πr) = µ0(
I

πa2
πr2)

B =
µ0Ir

2πa2
.

We can go outside of the cables with r = 2c.

˛
B⃗ · d⃗l = µ0I

B(2πr) = µ0(0)

B =
µ0Ir

2πa2
.

The current goes to the left inside and to the right outside, so it cancels out.
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6.4.5 Biot-Savart Law

•

dB⃗ =
µ0

4π

I d⃗l × r̂

r2
.

• dB⃗ represents the small individual contributions of circuit elements, r is
the distance from a wire, d⃗l is a small bit of wire.

6.4.6 Magnetic Field at the Center of a Coil

We can find the magnetic field at the center of a coil of current-carrying wire
using the Biot-Savart Law.

Figure 18: A coil of radius r with counterclockwise dl and I.

dB⃗ =
µ0

4π

I d⃗l × r̂

r2ˆ
dB⃗ =

ˆ
µ0

4π

I d⃗l

r2

B =
µ0I

4πr2

ˆ
dl =

µ0I

4πr2
2πr

B =
µ0I

2r
.

If there are n loops, then we multiply the whole thing by n: B = nµ0I
2r .
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6.4.7 Magnetic Field around a Long, Straight, Current-Carrying
Wire with Biot-Savart’s Law

Figure 19: A wire of length l.

dB⃗ =
µ0

4π

I d⃗l × r̂

r2

B⃗ =

ˆ ∞

−∞
dB⃗ = 2

ˆ ∞

0

dB⃗ =
2µ0I

4π

ˆ ∞

0

dl sin θ

r2

sin θ =
R

r
=⇒ r2 =

R2

sin2 θ

tan θ =
R

l
=⇒ l =

R

tan θ
= R cot θ =⇒ dl =

−R

sin2 θ
dθ

B⃗ =
µ0I

2π

ˆ ∞

0

−Rdθ sin θ

sin2 θ

(
sin2 θ

R2

)
B⃗ =

µ0I

2π

ˆ ∞

0

− sin θ dθ

R
=

µ0I

2πR

ˆ 0

π/2

− sin θ dθ

B⃗ =
µ0I

2πR
[cos 0− cosπ/2] =

µ0I

2πR
.

7 Electromagnetism

7.1 Electromagnetic Induction

7.1.1 Magnetic Flux

• Magnetic flux is the amount of magnetic field passing through an area.

•

ΦB =

ˆ
B⃗ · dA⃗ .
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7.1.2 Faraday’s Law

• Changing the magnetic field through a coil of wire will create a current
called the induced current.

– The induced current is caused by an induced emf, ϵ, and I = ϵ
R .

– The emf is generated by changing the magnetic flux by changing the
magnetic field, the area of the loop, or the orientation of the loop in
relation to the magnetic field.

•

ε = −dΦB

dt
.

7.1.3 Motional EMF for a Metal Bar on Metal Rails

Figure 20: A metal bar moving to the right with velocity v on metal rails with
dimensions h and l.

ε =
−dΦ

dt

=
−B dA

dt

=
−Bhdl

dt
= −Bhv.

7.1.4 Lenz’s Law

• Lenz’s Law is used to find the direction of an induced current. It’s the
reason for the negative in Faraday’s Law: ε = −dΦB

dt .

– The induced current creates its own magnetic field that opposes the
change in the magnetic flux.

• How to apply Lenz’s Law:
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1. Determine the direction of the magnetic field in the conducting loop.

2. If the flux is INCREASING, the induced current must create a mag-
netic field in the OPPOSITE direction of the current magnetic field.

3. If the flux is DECREASING, the induced current must create a mag-
netic field in the SAME direction of the current magnetic field.

7.1.5 Forces and Torques

• Wires and loops can experience net forces and/or net torques because of
changing flux.

7.2 Inductance

• Inductors are coils of wire that can self-induce an emf and current. A
coil is said to have inductance

L = N
ΦB

I
.

– Unit of inductance is the Henry (H).

– Inductors oppose any change in the current of a circuit. Larger in-
ductors can slow a change in current more.

•

ε = −L
dI

dt
.

• Faraday’s Law to inductors:

ε =

˛
E⃗ · d⃗l = −dΦB

dt
.

•
τ =

L

R
13.

• At first, an inductor doesn’t let any current through. After a long time,
an inductor acts like a wire.

7.3 Maxwell’s Equations

1. Gauss’s Law: ˛
E⃗ · dA⃗ =

Qenc

ε0
.

2. Gauss’s Law for Magnetism:
˛

B⃗ · dA⃗ = 0.

13Not on the equation sheet, but should memorize.
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3. Faraday’s Law: ˛
E⃗ · d⃗l = − d

dt

ˆ
B⃗ · dA⃗.

4. Ampere’s Law14: ˛
B⃗ · d⃗l = µ0I.

14But this is inaccurate, since an electric field induces a magnetic field which induces an

electric field... We have to add µ0ε0
dΦE
dt

.
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