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Abstract: This paper presents an approach for modeling software common cause failures (CCFs) within 

digital instrumentation and control (I&C) systems. CCFs consist of a concurrent failure between two or 

more components due to a shared failure cause and coupling mechanism. This work emphasizes the 

importance of identifying software-centric attributes related to the coupling mechanisms necessary for 

simultaneous failures of redundant software components. The groups of components that share coupling 

mechanisms are called common cause component groups (CCCGs). Most CCF models rely on 

operational data as the basis for establishing CCCG parameters and predicting CCFs. This work is 

motivated by two primary concerns: (1) a lack of operational and CCF data for estimating software CCF 

model parameters; and (2) the need to model single components as part of multiple CCCGs 

simultaneously. A hybrid approach was developed to account for these concerns by leveraging existing 

techniques: a modified beta factor model allows single components to be placed within multiple 

CCCGs, while a second technique provides software-specific model parameters for each CCCG. This 

hybrid approach provides a means to overcome the limitations of conventional methods while offering 

support for design decisions under the limited data scenario. 

 

 

1.  INTRODUCTION 
 

Digital instrumentation and control (I&C) systems offer many benefits over their traditional analog 

counterparts; however, technical challenges and costs associated with ensuring their safe and reliable 

implementation have slowed the adoption of digital upgrades within the nuclear industry [1]. In 1997, 

the United States (U.S.) Nuclear Regulatory Commission funded research to identify the challenges of 

implementing digital I&C systems within the nuclear industry [2]. The identification, quantification, 

prevention, and mitigation of potential common cause failures (CCFs) within digital I&C systems 

remains a relevant technical challenge today [3]. This work presents a approach for CCF analysis as 

part of the Idaho National Laboratory (INL) framework for the risk assessment of digital I&C systems 

developed under the Risk-Informed Systems Analysis (RISA) Pathway of the U.S. Department of 

Energy (DOE) Light Water Reactor Sustainability (LWRS) program [4, 5, 6]. 

 

A CCF is the occurrence of two or more failure events due to the simultaneous occurrence of a shared 

failure cause and a coupling factor (or mechanism) [7]. The failure cause is the condition to which 

failure is attributed, whereas the coupling mechanism creates the condition for the failure cause to affect 

multiple components, thereby producing a CCF [7]. Some examples of coupling mechanisms given in 

NUREG/CR-5485 include design, hardware, function, installation, maintenance, and environmental 

conditions [7]. Any group of components that share similarities via coupling mechanisms may have a 

vulnerability to CCF; a group of such components are considered a common cause component group 

(CCCG) [7]. The identification of coupling factors and, by extension, CCCGs is an essential part of 

CCF analysis. Often, CCF models attempt to simplify an analysis by assuming symmetry for the 

components of a CCCG. For example, a CCCG may be assigned by assuming components are identical 

where any differences in the coupling factors are ignored. There are many methods for modeling CCFs, 

including direct assessment methods, ratio models (e.g., beta factor and alpha factor models), Bayesian 



inference methods, and shock models [8]. Nearly all of them rely on symmetry; the most notable 

exceptions are the direct assessment methods and those based on Bayesian inference. However, it may 

be important to explicitly consider the influences of multiple coupling factors that might otherwise be 

ignored by the symmetry assumption. A software failure is the direct result of operational conditions 

(i.e., a trigger scenario) activating some hidden software defect(s) causing the inability of the software 

to perform its require or intended functions (based on concepts from [9] and [10]). A software CCF will 

occur when a coupling mechanism creates a scenario for operational conditions to activate a common 

software defect. Given a group of redundant software components, variations in their operating 

conditions may lead to some, but not all, components failing together. Variation of maintenance 

activities, input variable sources, component locations, and installation teams influence the operational 

environment; ultimately, subtle differences in coupling mechanisms may influence which components 

fail together. Capturing asymmetry between components may be necessary for software CCF modeling, 

but it can be challenging with conventional methods. 

 

Figure 1. Example system showing the relationship of independent and dependent failures in the 

context of a fault tree. 

 
 

Consider a scenario shown in Figure 1 where the components are arranged in the 2/3 criteria for failure. 

The probability of failure for the system, as given in NUREG/CR-5485, is shown below: 

The common practice in reliability modeling is to assume the failure probabilities (or rates) of similar 

components are the same [7]. This symmetry assumption results in the following: 

𝑄1
3 = 𝑃(𝐴𝐼) = 𝑃(𝐵𝐼) = 𝑃(𝐶𝐼) = 𝑄1 (2) 

𝑄2
3 = 𝑃(𝐶𝐶𝐹𝐴𝐵) = 𝑃(𝐶𝐶𝐹𝐵𝐶) = 𝑃(𝐶𝐶𝐹𝐴𝐶) = 𝑄2 (3) 

𝑄3
3 = 𝑃(𝐶𝐶𝐹𝐴𝐵𝐶) = 𝑄3 (4) 

where 𝑄𝑘
𝑚 represents the failure rate or probability of an event involving k components in a CCCG of 

size m. Now, consider the case when the components of Figure 1 share some, but not all, coupling 

factors. In this new scenario, components A, B, and C are coupled by procedures, while A and B are 

coupled by location. The options are to either ignore the differences or to account them directly. 

Ignoring the differences leads to a single CCCG and reliance on Equations 1-4. When the differences 

are considered, the traditional approach forms two CCCGs: (1) CCCG1 with components A, B, and C; 

and (2) CCCG2 with components A and B. This ultimately requires a single component to be part of 

multiple CCCGs. The symmetry assumption applied to CCCG1 relies on the same equations as above. 

The symmetry assumption applied to CCCG2 gives: 

𝑄1
2 = 𝑃(𝐴𝐼) = 𝑃(𝐵𝐼) = 𝑄1 (5) 

𝑄2
2 = 𝑃(𝐶𝐶𝐹𝐴𝐵) = 𝑄2 (6) 

Placing A and B within multiple CCCGs creates additional challenges because conventional models 

(i.e., the alpha factor model [7]) may provide two different probabilities for the same CCF event [11]. 

𝑃(𝐹) = 𝑃(𝐴𝐼)𝑃(𝐵𝐼) + 𝑃(𝐵𝐼)𝑃(𝐶𝐼) + 𝑃(𝐴𝐼)𝑃(𝐶𝐼) 

+𝑃(𝐶𝐶𝐹𝐴𝐵) + 𝑃(𝐶𝐶𝐹𝐵𝐶) + 𝑃(𝐶𝐶𝐹𝐴𝐶) + 𝑃(𝐶𝐶𝐹𝐴𝐵𝐶) 
(1) 



For example, some CCF models may determine 𝑃(𝐶𝐶𝐹𝐴𝐵) from CCCG1 to be different than 𝑃(𝐶𝐶𝐹𝐴𝐵) 

from CCCG2. This is because conventional models incorporate the CCCG size as part of their 

evaluation process and consider combinations of failures between the components of the CCCG. If 

modeling is performed using a program such as the Systems Analysis Programs for Hands-on Integrated 

Reliability Evaluations (SAPHIRE) [12], having a single component within multiple CCCGs may lead 

to double counting of failure events. Ma et al. address this issue further and suggest using the largest 

CCCG that is reasonable [11]. However, this solution requires the analyst to ignore the potential 

asymmetry of the coupling factors. They suggest a second option may be to select which value of the 

duplicate failure events is appropriate. Additional examples exist that allow components to be part of 

multiple CCCGs, such as when each CCCG represents a unique failure mode [11]. 

 

In order to directly consider subtle differences in coupling mechanisms, there are two approaches for 

forming the CCCGs. The first, as mentioned earlier, forms unique CCCGs for each shared set of 

coupling factors and may require some components to be part of multiple CCCGs. The second approach 

forms CCCGs that allow for some variation in the coupling mechanisms (e.g., from Figure 1, a single 

CCCG that contains A, B, and C, but allows for differences in 𝑃(𝐶𝐶𝐹𝐴𝐵), 𝑃(𝐶𝐶𝐹𝐵𝐶), and 𝑃(𝐶𝐶𝐹𝐴𝐶) 
directly, rather than assume they all equal 𝑃(𝑄2)). The second approach requires an asymmetric model 

to directly account for these differences within the CCCG. Models for asymmetry and models that allow 

components to be part of multiple CCCGs have been addressed by several publications. Rasmussen and 

Kelly proposed a method to deal with asymmetric failure probabilities within the context of the basic 

parameter model [13]. In 2012, Kančev and Čepin proposed a modification of the beta factor model 

that allows components to be assigned to multiple CCCGs based on their coupling factors [14]. 

O’Connor and Mosleh proposed a partial alpha factor model and a Bayesian approach (the general 

dependency model); an extension to the alpha factor model, the partial alpha factor works to explicitly 

model coupling factors between components [15]. The general dependency model relies on a Bayesian 

network to account for three parameters—a cause condition probability, component fragility, and 

coupling factor strength [16]. In 2020, Higo et al. developed a method to account for the combined 

influence of asymmetric and symmetric CCF probabilities by assessing the degree of shared coupling 

factors [17]. This work was later refined by combining with a gamma factor model to express inter-unit 

CCF probability [18]. The challenge with these methods is their dependence on proprietary data for 

model parameters. Far less data is available for software-based CCFs, than for analog CCFs which 

challenges the application of these recent innovations. In addition, those methods that account for 

qualitative differences in coupling mechanisms (e.g., [8] and [16]) rely on data that may not exist for 

newly designed software systems. The goal of our work is to quantify software CCFs given minimal 

data while also considering the influence of software attributes on coupling mechanisms. Given most 

asymmetric models require data that is unavailable for software, we will forgo the formation of 

asymmetric CCCGs and instead rely on approach that considers qualitative information for CCF 

modeling while also allowing components to be part of multiple CCCGs. 

 

This work proposes an approach for modeling software CCF given: (1) a lack of operational and CCF 

data for defining software CCF model parameters; and (2) the need to model single components as part 

of multiple CCCGs simultaneously. The model best suited for a limited data scenario may be the one 

requiring the fewest parameters. In this case, the modified beta factor model by Kančev and Čepin 

(referred to as the modified BFM in our work) is demonstrated for software CCF analysis. Section 2 

details our methodology for modeling software CCF including innovations for defining software-

specific model parameters. Section 3 provides a case study. Finally, Section 4 discusses our results and 

conclusion. 

 

2.  METHODOLOGY 
 

This section is focused on answering two needs for modeling software CCFs. The first part of this 

section discusses an approach for modeling components as part of multiple CCCGs simultaneously as 

provided by the modified BFM. The second half details the innovative application of the modified BFM 

for software CCF analysis. Specifically, this section details our innovations for addressing the lack of 

operational and CCF data typically used to define model parameters. 



The modified BFM, as its name suggests, is based on the beta factor model [14]. The beta factor model 

is one of the oldest CCF models and assumes that a total failure probability (𝑄𝑡) of a component is a 

contribution of independent (𝑄𝐼) and dependent (𝑄𝐷) failures; the dependent failure probability is given 

as a fraction (i.e., 𝛽) of the total failure probability (𝑄𝑡) of the component as observed in Equation (7)). 

Likewise, the independent failure is also a function of 𝛽 . The beta factor model implements the 

symmetry assumption such that all the components within a CCCG fail together according to the 

dependent (i.e., CCF) probability defined by beta. The model does not account for combinations of 

failures within a CCCG [7]. The beta factor model applied to a CCCG of A, B, and C will only find 

𝐶𝐶𝐹𝐴𝐵𝐶 . Therefore, the only way to consider a CCF of two components is to assign them their own 

CCCG. This is the basis of the modified BFM. Our work assumes that the potential for combinations 

of failures with the CCCG is largely dependent on the existence of subtle differences in the coupling 

mechanisms. Hence, to account for any distinct CCFs, we rely on coupling factor-based CCCGs. 

𝑄𝑡 = 𝑄𝐼 + 𝑄𝐷 (7) 

𝑄𝐷 =   𝛽𝑄𝑡 (8) 

𝑄𝐼 =   (1 − 𝛽)𝑄𝑡 (9) 

The modified BFM is designed to allow components to be members of multiple CCCGs [14]. Like the 

beta factor model, the modified BFM assumes the total failure probability/rate of a component is the 

summation of independent and dependent failures. Equation (10) shows the basis of the modified BFM, 

which is that the total dependent failure consists of the contribution of each CCCG failure. Each CCCG 

is assigned a group beta (𝛽𝑤 ) that represents the contribution of that CCCG to the total failure 

probability. Equation (14) shows the independent failure probability in terms of each CCCG beta and 

total failure probability. 

𝑄𝐷 = 𝑃(𝐶𝐶𝐶𝐺1) + 𝑃(𝐶𝐶𝐶𝐺2) + ⋯ 𝑃(𝐶𝐶𝐶𝐺𝑤) (10) 

𝑃(𝐶𝐶𝐶𝐺𝑤) =  (𝛽𝑤)𝑄𝑡 (11) 

𝛽𝑡 = ∑ (𝛽𝑤 )
𝑤

1
 (12) 

𝑄𝐷 = 𝑄𝑡 ∑ (𝛽𝑤 )
𝑤

1
 (13) 

𝑄𝐼 = (1 − 𝛽𝑡)𝑄𝑡 = [1 − ∑ (𝛽𝑤)
𝑤

1
] 𝑄𝑡 (14) 

Some advantages of this method include its ease of application, its consideration of CCCG-specific 

coupling factors, and its ability to account for multiple CCCGs directly. Double counting is avoided 

because the model assumes that CCFs represent the failure of each component within the CCCG and 

no other sub-combinations. For example, given two CCCGs (e.g., components A, B, and C for CCCG1 

and A and B for CCCG2), there will be no chance of counting 𝑃(𝐶𝐶𝐹𝐴𝐵) twice because 𝑃(𝐶𝐶𝐹𝐴𝐵) is 

only evaluated for CCCG2. The modified BFM, like most methods, requires reference data to determine 

each CCCG failure probability/rate. Like other ratio models, the quantification of its parameters can be 

challenging for a limited-data scenario. The modified BFM is limited to identical components with 

identical total failure probabilities. If the 𝑄𝑡  for the components within a CCCG are not identical, 

depending on the 𝑄𝑡  selected for Equation (11), there will be differing values for the same CCFs. 

Sources [13] and [19] provide support for this scenario.  An additional limitation can occur if the total 

beta, shown by Equation (12), exceeds unity. If this happens, then the summation of dependent failures 

will exceed the total failure probability. To account for this issue, Kančev and Čepin indicate a possible 

solution is to normalize the CCCG beta factors such that they sum to unity while maintaining their 

relative magnitudes. The second and third options include normalizing by the largest CCCG beta or 

using weight factors for each CCCG, respectively [14]. It is best to select the option which matches 

model assumptions (e.g., the first option will work better for software CCF low diversity systems, 

because it is expected that dependent software failure will exceed the independent software failure 

probability). Despite its known limitations, this work will employ the modified BFM for the 

quantification of CCFs because it works directly for the multiple CCCG scenario. 



The next challenge is defining the model parameters. The emphasis of the current work is the limited-

data scenario that naturally requires some form of expert elicitation. For elicitation, it is desirable to 

consider qualitative defenses against CCFs [19, 20]. There are at least two methods presented in 

literature that express the elicitation of the beta parameter without the use or dependence on operational 

data. These two methods, both of which are called “partial beta methods,” develop beta from a 

combination of partial attributes; one employs an additive scheme to find beta [19], while the other a 

multiplicative scheme [20]. 

 

The first method, called partial beta factor-1 (PBF-1) in our work, was developed on the claim that 

dependent failures could not be determined without an engineering assessment of that system’s defenses 

for such failures [20]. An assessment is made according to 19 defenses (e.g., functional diversity, 

maintenance, etc.), where each defense receives a partial beta value (i.e., 𝛽𝑖 between zero and one, 

where a zero score indicates a high defense against CCF). The product of the 19 scores is then used as 

the beta factor for the system. This multiplicative scheme may tend to predict small values for beta. For 

example, if 18 of the defenses are given 𝛽𝑖 = .99, the CCF likelihood for the system should be high. 

However, the remaining defense (𝛽19) can dominate the system, resulting in an improper score for the 

system beta (e.g., if 𝛽19 = .1 and 𝛽1−18 = .99, then 𝛽 =  .083). Further complications could arise if 

additional defense categories are added. Ultimately, PBF-1 may underpredict dependent failures. 

 

The second method, called partial beta factor-2 (PBF-2), does not actually use partial betas, rather the 

method uses a collection of sub-factors that contribute to an overall beta score [19]. Humphreys’ method 

was later modified by Brand [21] and served as a foundation for a hardware CCF model used in the 

International Electrotechnical Commission (IEC) 61508 [22]. The PBF-2 was founded on the question, 

“What attributes of a system reduce CCFs?” [19]. These attributes, called sub-factors, are shown in 

Table 1. Each sub-factor was weighted by reliability engineers for their importance. The methodology 

requires the analyst to assign a score (e.g., A, B, C, etc.) for each sub-factor. An “E” indicates a 

component is well-defended against CCFs (i.e., A= poor, E= ideal). The sub-factor names alone are not 

sufficient for assessing each sub-factor; therefore, readers are advised to visit the original source 

material for scoring guidance. Beta, given by Equation (15), is a function of the assigned sub-factor 

scores and the denominator 𝑑. The model was arranged such that the upper and lower limits for beta 

correspond with dependent failure values reported in literature [19]. The limits are ensured by the sub-

factors and 𝑑 given in Table 1. The beta value determined by this method was intended to be used with 

beta factor model; but in this work, it will be used with the modified BFM. 

𝛽 =
∑(𝑆𝑢𝑏 − 𝑓𝑎𝑐𝑡𝑜𝑟𝑠)

𝑑
 (15) 

PBF-2 provides a convenient and structured determination of beta associated with the hardware failure 

of digital I&C components, yet only minimal consideration is provided for software [19]. In fact, some 

methods (e.g., IEC 61508) prefer to provide qualitative approaches to avoid or control software failures 

[23]. In contrast, this work emphasizes the quantification of both hardware and software failures. As 

mentioned, CCFs are conditional on a shared root cause and coupling factor. Within the context highly 

redundant digital I&C systems, and low instances of software diversity, it is anticipated that CCFs 

should represent a significant portion of the software failure. Redundant components share application 

software failure by nature of their common (i.e., identical) software.  

 

Software failure occurs by the activation of latent defects (e.g., deficiencies from coding errors, 

installation errors, maintenance errors, setpoint changes, requirements errors, etc.). Activation of latent 

defects is a result of certain operational conditions (i.e., trigger events) [10]. Trigger events act as 

software inputs, without which there would be no fault activation and, ultimately, no failure. A software 

CCF will result from a shared root cause (i.e., a shared trigger event and a defect) leading to the failure 

of two or more components by means of a coupling mechanism. Coupling mechanisms influence how 

a trigger event and/or a defect is shared by multiple components. As an example, consider that a 

software developer (i.e., a coupling mechanism) introduces a shared defect in redundant controllers 

allowing a trigger event to cause a CCF. In contrast, a maintenance procedure (i.e., a coupling 



Table 1. Beta Factor Estimation Table for Hardware. 

Sub-factors A A+ B B+ C D E 

Redundancy (& Diversity) 1800 882 433 212 104 25 6 

Separation 2400  577  139 33 8 

Understanding 1800  433  104 25 6 

Analysis 1800  433  104 25 6 

MMI 3000  721  173 42 10 

Safety Culture 1500  360  87 21 5 

Control 1800  433  104 25 6 

Tests 1200  288  69 17 4 

Denominator for Equation (15),  𝑑 = 51000. 

Note: The current work relies on an automatic calculation that provides slightly different table values than 

those given in the source material. The original derivation indicates that scoring an “A” for each sub-factor 

will result in 0.3 for the beta factor [19]. The current table provides 0.300 while the original provides 0.302. 

The difference is negligible, so this work employs the automated calculation for convenience. 

 

mechanism) may shuts down half of a system thereby creating a condition for a trigger event to affect 

only the active components. Given a group of redundant software components, variations in their 

operating conditions may lead to some, but not all, components failing together. Variations in the 

operational environment of otherwise identical components may result from differences in maintenance 

staff, inputs variables, etc. In other words, subtle differences in coupling mechanisms may lead to 

unique combinations of CCFs. Thus, it is essential to consider software-based coupling mechanisms 

when assessing the potential for CCFs within a digital I&C system. To account for software features, 

PBF-2 was modified in two ways: (1) the model was adjusted to increase the upper and lower limits of 

beta (i.e., 0.001 – 0.999), allowing for greater applicability to low diversity software systems; and (2) 

the sub-factor weights were changed to emphasize software-centric features. It is understood that 

diversity affects CCFs [10]. Consequently, the sub-factors that influence diversity were weighted 

heavily. As an example, the adjusted model emphasizes the introduction of software faults and coupling 

mechanisms by placing greater weight on those defenses that pertain to human interaction and the 

diversity of software. Subtle variations in the coupling mechanisms create quasi-diverse components, 

ultimately influencing the potential for CCFs. Table 2 shows the adjustments made to PBF-2 to account 

for software. It, along with Table 1, are used to define the beta factors for software and hardware 

failures, respectively. Sub-factors are scored according to the guidance given by [21] with some 

additional considerations for software: (1) to score Redundancy (& Diversity), the diversity is assessed 

(e.g., A indicates no diversity, while E indicates complete software diversity for the CCCG); (2) the 

testing category considers software operational testing; and (3) the separation category was changed to 

Input Similarity. Physical separation alone does not influence software failure unless there is 

consideration for how that physical separation changes the operational conditions of the components. 

Whereas the Redundancy (& Diversity) sub-factor considers the degree of internal similarity, the Input 

Similarity sub-factor considers the degree to which redundant software share external and input 

similarity. Guidance for scoring the Input Similarity is shown in Table 3. 

Table 2: Beta Factor Estimation Table for Software 

Sub-factors A A+ B B+ C D E 

Redundancy (& Diversity) 23976 10112 4265 1799 759 135 24 

Input Similarity 23976 10112 4265  759 135 24 

Understanding 7992  1422  253 45 8 

Analysis 7992  1422  253 45 8 

MMI 11988  2132  379 67 12 

Safety Culture 6993  1244  221 39 7 

Control 4995  888  158 28 5 

Tests 11988  2132  379 67 12 

Denominator for Equation (15), 𝑑 = 100000. 

 



Table 3. Sub-factor Guide for Input Similarity 

Score R=0 0 < R < .5 .5 ≤ R < 1 R ≥ 1 Zero 

Diversity 

Partial 

Diversity 

Complete 

Diversity 

A X    X X X 

A+  X   X X X 

B   X  X   

C   X   X X 

D    X X X  

E    X   X 

The input ratio (𝑅) is defined: 𝑅 = (𝑠 − 1)/𝑚 for 𝑠 = 1 and 𝑅 = 𝑠/𝑚 for 𝑠 > 1 where, 𝑚 = the number of 

components within the CCCG, and 𝑠 = number of input sources. 

 

This work presents an approach for performing CCF analysis on digital I&C systems given limited data 

by integrating the modified BFM and PBF-2. The approach relies on the modified BFM to allow 

components to be part of multiple CCCGs and PBF-2 defines beta factors for each CCCG. The hybrid 

approach provides a means to overcome limitations of conventional methods. A formalized process that 

relies on the modified BFM and PBF-2 is shown in Figure 2, which has been demonstrated in [24, 25]. 

The subsequent section will demonstrate this process as with a case study.  

 

Figure 2. Flowchart for Software CCF Modeling and Estimation. 

 

3.  CASE STUDY 
 

This case study describes the quantification of the CCFs found in the automatic trip function of a four-

division digital reactor trip system (RTS). Division-based sensor signals are sent to the bistable 

processors (BPs), which determine whether a trip is needed. When required, trip signals from the BPs 

are sent to each of the divisions’ local coincidence logic processors (LPs). The LPs vote on the incoming 

trip signals and send the output via digital output modules (DOMs) to selective relays, which again vote 

on the trip signals. The outputs of the selective relays pass through undervoltage trip devices (e.g., RTB-

D1-UV) and activate the undervoltage reactor trip breakers (e.g., RTB-A1). The correct combination of 

breakers results in a reactor trip. Diverse trip mechanisms (e.g., shunt trip devices like RTB-DA-ST) 

via the diverse protection system (DPS) and manual trip mechanisms via the main control room (MCR) 

or the remote shutdown room (RSR) are not part of the case study. Table 4 provides the list of 

components for which failure rates need to be quantified. In this work, the only components shown in 

Figure 3 to contain application software are the BPs and LPs, both of which are programmable logic 



controllers. Evaluation of the software CCF values follows the approach described in the previous 

section. 

Figure 3. Four-Division Digital Reactor Trip System (adapted from [26]). 

 
 

Table 4. Total Hardware and Software Failure Probabilities for CCF Case Study. 

Components Hardware 

failure 

Total Hardware 

failure probability 

Software 

failure 

Total Software failure 

probability 

BPs YES 4.00E-5 YES 1.871E-4 

LPs YES 6.48E-5 YES 1.871E-4 

Digital Output Modules YES 1.64E-5 N/A N/A 

Selective Relay  YES 6.20E-6 N/A N/A 

RTB-UV device YES 1.70E-3 N/A N/A 

RTB-Shunt device YES 1.20E-4 N/A N/A 

RTBs  YES 4.50E-5 N/A N/A 

All hardware values came from [27]. 

 

The details of the RTS were based on limited publicly available information [28], consequently some 

assumptions were made to complete the case study: (1) there is no diversity in the software; (2) all 

hardware components are not diverse (unless otherwise specified); (3) installation teams and 

maintenance teams are assumed identical for each CCCG; (4) each set of identical components that are 

part of the same CCCGs have the same total failure probabilities; (5) The software failure probability 

of the BPs were quantified* by the Bayesian and Human reliability analysis (HRA)-aided method for 

 
* The initial demonstration of BAHAMAS assumed a generic software component layout consisting of an input, 

an output, a central processing unit, and memory modules; each module was assumed to have software. The 

current work followed the same format given in the original publication, but assumes software is only found 

within the memory of each PLC processor.  



the reliability analysis of software (BAHAMAS). For convenience the failure probability of the BPs 

and LPs are assumed to be identical.  

 

The first step shown in Figure 2 is to assign the CCCGs after identifying the identical components and 

their coupling factors. There are eight identical BPs in the RTS, two per division. They each have an 

identical function and are assumed to share the same features, except for their installation location. All 

BPs share identical coupling factors, except for location, resulting in two CCCGs. One CCCG is based 

on shared function, hardware, software, and manufacturer. The second CCCG considers location. Table 

5 shows the CCCGs identified for the BPs using the Redundancy-guided Systems-theoretic Hazard 

Analysis (RESHA) method developed at INL [29, 30]. Location creates an operational environment 

that is unique for software of the BPs. Despite having identical software, input from division-specific 

sensors creates the potential for the BPs to have division-specific CCFs associated with their operational 

conditions. 

 

Table 5. CCCGs for the BPs. 

CCCGs Coupling Factors 

1 All BPs Function, Hardware, Software, & Manufacturer  

2 Division A: BP1, BP2 Location (Division A) 

3 Division B: BP1, BP2 Location (Division B) 

4 Division C: BP1, BP2 Location (Division C) 

5 Division D: BP1, BP2 Location (Division D) 

 

The next step from Figure 2 is to define the beta-factor parameters. Each CCCG receives a score for 

each sub-factor category. Sub-factors are scored according to the guidance provided in [21], with 

additional provisions for software as indicated in the preceding section. For example, CCCG1 for the 

BPs receives an A+ for Input Similarity. Specifically, CCCG1 consists of eight BPs (i.e., m= 8). Each 

division receives its own sensor input that is shared by its BPs (i.e., s= 4). The result is R=s/m=0.5 (i.e., 

A+ from Table 3). Table 6 shows the sub-factor scores for the BPs of CCCG1 and the calculation for 

beta based on Equation (15). The BPs for CCCGs 2–5 share the same qualitative features and receive 

beta factor scores of 0.123 and 0.568 for their hardware and software, respectively. 

 

Table 6. Sub-Factor Scores for BPs CCCG 1 (All BPs CCF). 

Sub-factors Hardware Software 

Redundancy (& Diversity) B+ 212 A 23976 

Separation/Input Similarity E 8 A+ 10112 

Understanding A 1800 A 7992 

Analysis D 25 D 45 

MMI C 173 C 379 

Safety Culture E 5 E 7 

Control D 25 D 28 

Tests C 69 C 379 

Beta for the CCCG 𝛽𝐻𝐷1 = 0.045 𝛽𝑆𝑊1 = 0.429 

 

The next step from the CCF modeling flowchart is to determine the CCFs. The BPs have multiple 

CCCGs; therefore, the modified BFM is used. For example, Division A, BP1 is found in two groups, 

CCCG1 and CCCG2, as shown in Table 5. Equations (7, 10 – 14) are used to find the independent and 

dependent failures of the BPs. The results of the CCF analysis are shown in Table 7. Note that RACK, 

DIVISION, and ALL correspond to the CCCG categories, while INDIVIDUAL corresponds to 

individual component failure. The CCCG ALL contains all the identical components within the system 

of interest. The given CCCG categories are not shared by all components; hence, there are no RACK 

CCCGs for the RTBs. Regarding the results, there is a difference between the software and hardware 

CCCGs of the LPs. The hardware CCCGs for the LPs are separated by location, just like the BPs. 

However, the potential for DIVISION and RACK level CCFs are precluded from consideration because 

there is nothing to distinguish them from the CCCGs representing all LPs; according to the case study, 

each LP has the same software and receives the same inputs. By contrast, the BPs have the potential for 



input variation amongst divisions. Thus, the BPs have DIVISION level software CCCGs, but the LPs 

do not. The results show that our methodology allows predicted software CCF to represent a larger 

failure probability than independent failure which matches our assumptions for a high redundancy low 

diversity software system. 

 

Table 7. Hardware and Software Failure Probability for RTS Components. 

Component INDIVIDUAL RACK DIVISION ALL Total  

BPs-Hardware 4.000E-05 N/A 5.943E-06 2.187E-06 4.813E-05 

LPs-Hardware 6.480E-05 1.076E-05 7.647E-06 3.961E-06 8.717E-05 

DOMs 1.640E-05 1.706E-06 1.015E-06 1.983E-07 1.932E-05 

Selective Relay  6.200E-06 N/A 6.073E-07 7.059E-08 6.878E-06 

RTB-UV device 1.700E-03 N/A N/A 1.763E-05 1.718E-03 

RTB-Shunt device 1.200E-04 N/A N/A 1.244E-06 1.212E-04 

RTB RTSS2 4.500E-05 N/A N/A 1.944E-06 4.694E-05 

BPs-Software 5.591E-07 N/A 1.062E-04 8.030E-05 1.871E-04 

LPs-Software 8.086E-05 N/A N/A 1.062E-04 1.871E-04 

 

4.  CONCLUSION 
 

This work introduces an approach for modeling software CCFs. A software CCF will be the result of a 

shared root cause (i.e., a trigger event and a latent fault) leading to the failure of two or more components 

by means of a coupling mechanism. Given a group of redundant software components, variations in 

their operating environments may lead to some, but not all, components failing together. Variations in 

the operational environment may result from differences in maintenance staff, input variables sources, 

and installation teams. These subtle differences may lead to unique combinations of CCFs. Thus, it is 

essential to consider software-based coupling mechanisms when assessing the potential for CCFs within 

a digital I&C system. When a group of components share coupling mechanisms, they form a CCCG. 

For most analyses, the components that belong to a CCCG do not belong to any other groups. This is 

because the components have no other coupling factors to share with components outside their existing 

group. When components can be grouped into multiple CCCGs (e.g., based on software operating 

environments), it becomes difficult to model their failure probabilities using conventional methods. 

 

The chosen methodology employs the modified BFM and PBF-2 for modeling software CCFs by 

introducing modifications to PBF-2 for defining software-specific model parameters. The modified 

BFM was selected because it conveniently models components with multiple CCCGs. Normally, CCF 

methods rely on historical data or experience to define model parameters. However, limited data 

associated with novel designs requires a solution for quantifying model parameters. Innovations to PBF-

2, together with the modified BFM, allow for a successful quantification process for the multiple 

CCCGs under a limited-data scenario. Several aspects of CCF modeling remain for future work. First, 

PBF-2 defines model parameters by considering the quality of a component’s defenses against CCF. 

The method only considers eight sub-factors for assessing beta. There may yet be additional software-

specific qualitative attributes to refine PBF-2. In addition, future research may provide an enumeration 

of software-specific coupling factors to aid the selection of software CCCGs. The modified BFM can 

also be improved. In its current form, the method, as with other ratio-based methods, is limited to similar 

components; future work may provide guidance for CCFs between non-identical components. In 

conclusion, the approach developed for this work provides a convenient means to quantify software 

CCF given a lack of operational and allow components to be part of multiple CCCGs simultaneously. 

Future collaborations with industry partners may afford our team the opportunity to investigate the data-

sufficient scenario. In this case, there will be many opportunities to improve our models. 
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