
Practical guide
to Cloud migration
with Chef automate
WHITEPAPER

© 2021 Progress. All Rights Reserved. 2

Table of Contents

DevSecOps is the new operating model / 3

Information security lags behind / 4

Information security by the numbers / 5

The delicate balance between speed and risk / 7

Compliance as code / 9

Chef continuous compliance cycle / 10

Chef compliance in practice / 12

Infosec meets DevOps with chef compliance / 13

Delivering automated compliance / 15
Challenges / 15

Solution / 16

Impact / 16

Information security with agility and speed / 16

What next / 17

https://www.progress.com/

© 2022 Progress. All Rights Reserved. 3

Introduction
The advent of cloud platforms has changed how applications are developed, and how

infrastructure is deployed. By providing the ability to launch and scale environments

on- demand, cloud platforms have allowed organizations to iterate faster than they could

have imagined under previous operating models that required manual, tedious acquisition

and configuration of inflexible data center infrastructure. Even so, migrating to the cloud

comes with its own unique challenges that need to be addressed. This paper will start by

articulating the challenges organizations face when beginning a cloud migration process,

and provide examples of how Chef can help organizations meet these challenges, and take

advantage of the myriad benefits of cloud adoption.

Challenges

What’s Keeping Your Organization
On-Prem?

Before you can realize the benefits of a cloud migration, it’s important to address some of

the reasons organizations choose to remain on premises. While migrating to the cloud can

drastically impact your ability to quickly and efficiently deploy and scale environments,

planning a successful migration is not without its challenges.

These challenges include:

Uncertainty over customer responsibilities
Cloud vendors provide tools to simplify management of environments, but it’s often

unclear where the vendor’s responsibility ends, and the customer’s begins. This

uncertainty can delay migrations by introducing concerns over how to effectively mitigate

risk. Even after responsibilities are identified and understood, organizations still need the

ability to audit their estate to validate that their responsibilities have been met, and that

environments are in compliance with their requirements.

Hybrid environment complexity
Most organizations, even among those that embrace cloud methodologies, still have

at least some on premises footprint. It can be difficult to maintain hybrid infrastructure

without also duplicating effort between environments, making processes difficult to scale

across on-prem and cloud estates.

© 2022 Progress. All Rights Reserved. 4

Maintaining deployment portability
Teams need to be trained on the tools of their selected cloud vendor or vendors, and

it can be difficult to budget time and resources appropriately as these skills are being

learned. This can be compounded when organizations are targeting multiple cloud

providers, where tooling and configuration specifics might be unique to each.

The sections that follow will address how Chef can help you meet these challenges without

necessitating a top-to-bottom redesign of deployment procedures when migrating to

a new platform. To achieve this, it’s imperative to strive for Continuous Automation -- a

repeatable workflow to detect, correct, and automate the configuration of all your systems.

Continuous Automation is critical to improving efficiency and reducing risk in cloud

migration given the responsibility customers maintain for security in the cloud and the

complexity involved in managing hybrid environments. This paper provides examples and

guidance for using Chef Automate, Chef, and InSpec with complementary tools to detect

misconfigurations on demand, correct configuration across hybrid environments, and

automate deployments across any cloud and your entire estate.

Understand your
responsibilities

Chef and the Shared Responsibility
Model

In order to help you determine the scope of your responsibilities in the cloud, providers

have created high-level guidance in the form of the “Shared Responsibility Model.”

These models aim to articulate where your cloud vendor’s responsibilities end, and yours

begin. The image below, from AWS, distinguishes between the two by defining AWS

as responsible for the security “of” the cloud, whereas your responsibility is for security

“in” the cloud. In other words, Amazon is responsible for maintaining and securing the

infrastructure and tools they provide, and you’re responsible ensuring that the applications

and infrastructure are securely configured within that framework.

© 2022 Progress. All Rights Reserved. 5

It’s important to note that even within this separation, there is still some overlap in

responsibilities to address. For example, while “storage” is listed among AWS’s

responsibilities in the above chart, you are still responsible for ensuring that the data you

store is properly encrypted, and has appropriate access controls. AWS provides and

maintains the tools for accomplishing these tasks, but it’s your responsibility to put them

into practice according to your organization’s needs.

A similar chart from Microsoft Azure (right) puts a finer point on some of these areas of

overlap. Here, any of the boxes that have a single color represent the sole responsibility

of either the customer or cloud provider, whereas boxes that contain both grey and

blue indicate a combination of the two, as outlined in the storage example above. As

Custom data

Compute

AWS Global
Infrastructure

Storage

Regions

Availability Zones

Edge
Locations

Database Networking

Responsible for Security
“IN” the Cloud

Responsible for Security
“OF” the Cloud

Platform, Applications, Identity & Access Management

Operating System, Network & Firewall Configuration

Client - Side Data
Encryption & Data
Integrity Authentication

Server-Side Encryption
(File System and/or Data)

Network Tra�ic
Protection (Encryption/
Integrity/Identity)

Responsibility On-Prem

Cloud Customer Cloud Provider

Iaas PaaS SaaS

Data classifications
& accounability

Client & end-poiny
protection

Identity & access
mangement

Application
level controls

Network controls

Host Infrastructure

Physical security

© 2022 Progress. All Rights Reserved. 6

organizations move towards more cloud-native PaaS and SaaS offerings, they’re able to

offload more security concerns to their cloud provider, but even in the rightmost column,

we can see that there will always be areas that you will be responsible for configuring and

validating, even within cloud-provided frameworks.

Validate Your Requirements with
InSpec

Chef’s software offerings are designed to help you manage your areas of responsibilities in

a repeatable, platform-agnostic way. Chef accomplishes this by providing Domain Specific

Languages (DSLs) that allow you to create code to detect deviations from security an

configuration standards (InSpec) and correct any misconfigurations that arise (Chef).

What makes Chef code portable is that it’s declarative by design -- in other words, you’re

responsible for defining what needs to be configured, and Chef can dynamically determine

how those configurations need to be applied wherever it’s being run. Ultimately this means

that cloud- provisioned instances can be validated and configured with the same code

used on traditional bare metal or VM based machines in your datacenter.

For a simple example, consider the installation of NGINX, a popular webserver. You can

detect whether it’s installed on a system via InSpec, by writing a control that looks

something like this:

To actually install NGINX, Chef’s package resource can be used in a similar fashion:

control ‘verify-nginx’ do

 impact 1.0

 title ‘Verify whether nginx is installed’

 describe package(‘nginx’) do

 it { should be_installed }

 end

end

package ‘nginx’ do

 action :install

end

© 2022 Progress. All Rights Reserved. 7

While this is a simple example, it encapsulates what makes tools like InSpec and Chef

powerful. Regardless of what OS flavor you’re running, or where your instances are

deployed, the same code can be used to validate and configure your systems. While

different environments will have differences between them that need to be accounted

for, those aspects that are common between them don’t need to be managed any

differently. This becomes increasingly important as you migrate workloads into the cloud,

as you only need to create automation for the net-new components of your design, and

can avoid duplicating efforts that have already been automated on-prem.

Manage hybrid
environments

Chef Cloud Integrations

Everything that’s been discussed so far can be applied to on-premises and cloud

environments alike, but organizations looking to migrate to the cloud have opportunities

and challenges that differ from their on-prem only counterparts. Cloud providers

offer tools and features to assist your organization in iterating more quickly, but making

effective use of them takes time and resources as your teams are trained up. In these

scenarios, Chef further assists in cloud adoption by providing a variety of integrations that

allow you to take advantage of the cloud’s capabilities, without having to create workflows

unique to each cloud or datacenter you manage. In this section, we’ll look at some of these

to give you insight into how you can prepare for managing your environments in the cloud.

Audit More than Just Servers with
InSpec

A unique aspect of administering systems in the cloud is that you’re no longer just

managing servers and network devices; most cloud platforms provide managed offerings

for everything from data storage to access control to load balancing. While using these

tools can help ease the burden of creating and maintaining home-grown solutions from

the ground up, you still need a way to validate that they’re properly configured. InSpec has

resources to help you do just that.

© 2022 Progress. All Rights Reserved. 8

For example, networking configurations are typically handled by configurable abstractions

rather than directly modified on a switch or router. In AWS, customers can create Virtual

Private Clouds (VPCs) which define, among other things, an isolated private network for an

environment. In InSpec, you can use the aws_vpc resource to define your expectations for

such the same way you might evaluate the content of a running VM.

Even when you are running virtual machines within the cloud, you might want to validate

some of that instance’s metadata which isn’t always directly available from within the

instance itself. Again, InSpec can be used here to capture that information thorough similar

cloud-specific resource. Below is an example of some VM validations in Microsoft Azure.

Both examples reference data that can typically only be collected via your cloud provider’s

GUI or API, but expressed in a way that can be combined with server-specific controls in a

single language, and aggregated in a single dashboard with Chef Automate.

describe aws_vpc(‘vpc-12345678’) do

 it { should exist }

 it { should be_default }

 its(‘cidr_block’) { should cmp ‘10.0.0.0/16’ }

 its(‘state’) { should eq ‘available’ }

end

describe azure_virtual_machine(group_name: ‘Inspec-Azure’, name:

‘Windows-Internal-VM’)

do

 its(‘os_type’) { should eq ‘Windows’ }

 it { should have_boot_diagnostics }

 its(‘location’) { should eq ‘westeurope’ }

 it { should have_data_disks }

 its(‘vm_size’) { should eq ‘Standard_DS2_v2’ }

end

© 2022 Progress. All Rights Reserved. 9

Cloud Configuration as Code with
Chef

These same sets of PaaS and cloud-native tooling present unique challenges for

automating configuration management, as with security validation. To address this, Chef

has numerous integrations to allow you to configure these services the same way that

InSpec helps you validate them. As with InSpec’s cloud resources, Chef provides resources

specific to common cloud workflows to assist in automating their management.

One popular example is how data storage is managed in the cloud. Most cloud providers

offer a native storage solution that allows for creating shared storage resources with built

in RBAC capabilities without the additional overhead of maintaining traditional network

storage devices. Chef helps support this model by providing cloud-specific resources for

managing those objects with the same syntax you use to manage software configurations

on the servers themselves. Below is an example using Azure’s Storage Containers.

The code above will first create a storage account, called ‘my-account’, followed by a

storage container called ‘my-container’, which will be created in said account. Similar

resources exist for AWS (aws_s3_bucket) and GCP (gstorage_bucket), each with

configurable parameters to capture the associated cloud’s unique tunables. Analogous

resources exist for similar cloud-specific PaaS offerings including management tools for

DNS, IAM, Load Balancing, Databases, and more.

microsoft_azure_storage_account ‘my-account’ do

 management_certificate microsoft_azure[‘management_certificate’]

 subscription_id microsoft_azure[‘subscription_id’]

 location ‘West US’

 action :create

end

microsoft_azure_storage_container ‘my-container’ do

 storage_account ‘my-account’

 access_key microsoft_azure[‘access_key’]

 action :creat

end

© 2022 Progress. All Rights Reserved. 10

Dynamic Configuration: Multiple
Platforms, One Codebase

Another key benefit of defining configuration as code is that you can create dynamic

behavior based on system profiling data, collected by a chef component called ohai. Ohai

is run every time a node starts a chef-client run, and collects information about that node

that can be used to trigger conditional behavior.

A simple illustration of where you might need this ability is when packages are named

differently in different operating systems. For example, the webserver software “apache”

can be run on both Debian and Redhat based OSes, but the package names differ

between these operating systems. Generally, in debian, the package is called “apache2”,

whereas in redhat, it’s called “httpd”. Chef’s package resource can be run on either system,

but you’ll still need to account for their different naming conventions in your code. Since

ohai is already capturing your OS information automatically, you can use that data to

conditionally alter your execution without having to maintain separate codebases, as

illustrated in the example below.

In the above example, the “package” attribute is set based on what “platform_family” is

detected by ohai, and the package resource will substitute the appropriate value for

“node[‘apache’] [‘package’]”. Ohai also collects data about what cloud provider, if any, your

node was deployed within, allowing us to use cloud-specific input as a condition for

execution as well. Consider what happens if your organization has infrastructure deployed

on premises and in AWS, and you maintain load balancers in both environments. As with

the apache example, you can use the ohai data collected during a chef client run to inform

how you configure those systems dynamically. In the example below, a “load_balancer”

cookbook has been created with an “haproxy” recipe for configuring on-prem systems, and

a “elb” recipe to configure an Elastic Load Balancer on AWS. Rather than add those recipes

if node[‘platform_family’] == “debian”

 node.default[‘apache’][‘package’] = “apache2”

elsif node[‘platform_family’] == “rhel”

 node.default[‘apache’][‘package’] = “httpd”

end

package node[‘apache’][‘package’] do

 action :install

end

© 2022 Progress. All Rights Reserved. 11

directly to the run list of associated systems, you can instead have your “default” recipe

decide which of these more specific recipes to include based on the information collected

by ohai.

Defining that logic within your recipe allows the same “default” recipe to be run

regardless of the underlying environment, and Chef will take the appropriate action in

each based on your conditional statement. The benefits of this capability are twofold.

Because the logic is controlled by code, misconfiguration due to human error is easier

to avoid. Because it allows the same recipe to be applied to disparate systems, it

simplifies your overall configuration by having environmental differences evaluated

dynamically, rather than in manually-defined bespoke permutations.

Maintain deployment
portability for any cloud

Provisioning - Consistent Deployment
in Any Cloud

One of the primary benefits of moving to the cloud is the ability to provision infrastructure

on demand. This can range from development and QA teams having the ability to

selfserve environments as needed, operations teams having the ability to dynamically

scale environments, and the removal of procurement as a bottleneck for all of the above.

Chef helps organizations ensure that as these instances, services, and environments are

created, they’re configured consistently regardless of which team initiates the request, or

which environments are being updated.

if node[‘cloud’][‘provider’] == “ec2”

 include_recipe “load_balancer::elb”

else

 include_recipe “load_balancer::haproxy” end

end

© 2022 Progress. All Rights Reserved. 12

Testing in the cloud with Test Kitchen
The Chef Development Kit (ChefDK) comes packaged with a testing harness called Test

Kitchen. At a high level, Test Kitchen provides a repeatable workflow for instantiating,

configuring, verifying, and destroying ephemeral infrastructure for easy testability at

velocity and scale. What’s better, all four of those steps can be accomplished by running a

single command: “kitchen test”. As you might expect, when running Test Kitchen, Chef is

the default tool for applying configurations, whereas InSpec is the default tool for

verification. By contrast, when it comes to provisioning and destroying those instances,

Test Kitchen provides the flexibility to do so in a variety of ways. Test Kitchen has a variety

of configurable drivers for launching these instances on your local machines (e.g

Vagrant, Docker), into on-premises virtualization (e.g. VMWare), or into your cloud

environment (e.g. AWS, Microsoft Azure, GCP). A configuration file called kitchen. yml

controls which of these drivers should be used, and is where you can define driver-specific

behavior for your cloud of choice. Here’s an example using the kitchen-ec2 driver, which

allows you to launch your testing instances in AWS.

In the driver config, you define the cloud-specific settings for your instance. In the above

example, the driver section defines security groups, region, subnet, etc -- all of which are

specific to AWS. The remainder of the config contains information independent of the

selected cloud, such as operating systems, transports, and configuration details. The

advantage to this configuration is that, regardless of how or where your instance is

instantiated, the process for doing so remains the same:

driver:

 name: ec2

 security_group_ids: [“sg-1a2b3c4d”

 region: us-west-2 availability_zone: b

 subnet_id: subnet-6e5d4c3b

 iam_profile_name: chef-client

 instance_type: m3.medium

 associate_public_ip: true

kitchen test

© 2022 Progress. All Rights Reserved. 13

Server Provisioning with Knife Cloud
Plugins

Another core component of the ChefDK is a multipurpose utility called knife. Knife is the

CLI used to perform most day-to-day administrative tasks in a Chef environment, and

is also a tool that can be used to create and configure new instances in the cloud. Much

the same way that test kitchen allows us to create cloud-specific configuration files, knife

allows us to define both the cloud-specific and chef-specific information of any newly-

created instance in a single command. Here are some examples on AWS, Azure, and GCP.

AWS - knife-ec2

Azure - knife-azure

$ knife ec2 server create

 -I ami-cd0fd6be

 -f t2.micro

 --aws-access-key-id ‘Your AWS Access Key ID’

 --aws-secret-access-key “Your AWS Secret Access Key”

 -x myuser -P mypassword

 -N web-server-1 -E development -r ‘role[webserver]’

knife azurerm server create

 --azure-resource-group-name MyResourceGrpName

 --azure-vm-name my-new-vm-name

 --azure-service-location ‘westus’

 --azure-image-reference-publisher ‘MicrosoftWindowsServer’

 --azure-image-reference-offer ‘WindowsServer’

 --azure-image-reference-sku ‘2012-R2-Datacenter’

 --azure-image-reference-version ‘latest’

 -x myuser -P mypassword

 -N web-server-1 -E development -r ‘role[webserver]’

© 2022 Progress. All Rights Reserved. 14

GCP - knife google

In all three of the above examples, the first group of flags (e.g. --aws-access-key-id,

service-location, --gce-machine-type) are specific to the cloud providers themselves.

The penultimate line of each contains connection details, in this case username (-x

myuser) and password (-P mypassword)

The final line contains chef specific information:

• N web-server-1 Sets the ‘node name’, or unique identifier on the Chef Server.

• E development Sets the chef environment, which can be used to organize classes of

• r ‘role[webserver]’Sets the ‘run list’, or the Chef recipes and/or roles that should

be applied to the instance once it’s created.

In all three examples, this single command does a few discrete things:

• Launches a new instance in the specified cloud.

• Installs the Chef Client.

• Registers the instance with a Chef Server, with the node name and environment

specified.

• Applies the recipes specified in the run list.

When complete, you have a newly created instance, already configured with the

appropriate data defined in your run list.

knife google server create

 --gce-image centos-7-v20160219

 --gce-machine-type n1-standard-2

 --gce-public-ip ephemeral

 -x myuser -P mypassword

 -N web-server-1 -E development -r ‘role[webserver]’

© 2022 Progress. All Rights Reserved. 15

Environment Provisioning with Chef
& Terraform

The tools covered in this section thus far have focused primarily on the instantiation

of individual instances. A fully realized environment will likely also require defining

associated network, storage, and any other cloud-specific offerings that need to be

configured alongside the instances being managed by Chef. To address the complexity

of defining and managing that entire ecosystem, vendors have provided templating

languages to provide a consistent way to provision environments end-to-end (e.g. AWS

Cloudformation, Azure ARM). While Chef can be used within these frameworks, each

format is only usable within its associated cloud, and cannot be easily ported between

providers without maintaining separate templates for each.

Hashicorp Terraform is a provisioning tool that, like Chef, provides a declarative

configuration language designed for cloud-agnostic abstraction. At a high level, Terraform

combines a library of providers, responsible for defining interactions with specific clouds’

APIs, with provisioners, responsible for defining how infrastructure should be configured

once they’re launched. As with the Test Kitchen example covered earlier, this allows for

combining components into a single configuration file, and launching a full environment

stack with a single command: “terraform apply”.

...

Configure the AWS Provider

 provider “aws” {access_key = “${var.aws_access_key}”

 secret_key = “${var.aws_secret_key}”

 region = “us-east-1”

}

Create a web server

resource “aws_instance” “web” {

 # ...

 provisioner “chef” {

 environment = “production”

 run_list = [“webserver::default”

 node_name = “webserver1”

 server_url = “https://chef.company.com/organizations/org1”

 version = “12.4.1”

 }

}

...

© 2022 Progress. All Rights Reserved. 16

Above is a simplified snippet of a Terraform configuration illustrating some of these

integrations in action. This example will launch instances into AWS, and configure them

with Chef. The “provider” section defines any AWS-specific information, similar to the

“driver” section of the Test Kitchen example. The “provisioner” section, by contrast, defines

chef-specific information, including what version of Chef to install, what Chef Server it

should be communicating with, and what configuration steps should be taken once it’s

created.

Chef Automate in the Cloud -
Visualize Your Automation

Once you start managing environments at scale, it becomes increasingly essential to

have a way to maintain visibility into configuration state and system health across your

estate, whether it exists entirely in a single cloud, across multiple clouds, or across a hybrid

on-prem/cloud environment. Chef Automate is a platform that provides a single pane of

glass into every system you manage, with change and audit history aggregated in a single

location.

For customers of AWS and Microsoft Azure, getting started with Chef Automate is easier

than ever! While Automate is packaged for easy installation anywhere, both AWS and

Azure provide pre-configured Marketplace images that can be deployed directly into your

cloud environment with a single click of a button

AWS users also have the option of deploying Opsworks for Chef Automate (OWCA),

providing a fully managed instance of Chef Automate, configurable from your AWS

Management Console. With OWCA, day-to-day administrative tasks, like version upgrades

and regular backups, are handled automatically, with user-friendly tools for configuring

frequency and retention periods within the dashboard.

© 2022 Progress. All Rights Reserved. 17

Review
This paper discusses how Chef supports the cloud shared responsibility model by

providing resources and integrations designed to help you automate management of

your cloud environments with the same tools and workflows used on premises. Key points

covered include:

• Customers are responsible for securing their applications and data, even when

services surrounding them are secured by their cloud provider.

• InSpec and Chef are designed with automation and repeatability in mind, making it

easier for organizations to adapt on-prem workflows to the cloud.

• Chef Automate provides visibility into current state as well as change and audit history

to ensure organizations can easily and effectively assess change across environments

and departments.

• Chef’s tools and platforms provide built-in integrations with popular cloud providers to

ensure a consistent workflow on-prem and in the cloud.

• InSpec and Chef can be used to manage servers and cloud-native PaaS offerings alike

through a consistent syntax for detecting and correcting issues respectively.

• Cloud Marketplace images and Opsworks for Chef Automate provide ways to reduce

friction for organizations looking to deploy Automate in their environments.

If your organization is undergoing a cloud migration, or if you’re simply looking to improve

existing processes, Chef is here to help! With a variety of cloud-focused resources, a

vibrant community of open source contributors, and a wealth of experience driving

organizational transformation for thousands of companies, take advantage of Chef’s

automation capabilities to move to the cloud with speed and confidence.

About Progress

Dedicated to propelling business forward in a technology-driven world, Progress (NASDAQ: PRGS)
helps businesses drive faster cycles of innovation, fuel momentum and accelerate their path
to success. As the trusted provider of the best products to develop, deploy and manage high-
impact applications, Progress enables customers to develop the applications and experiences
they need, deploy where and how they want and manage it all safely and securely. Hundreds of
thousands of enterprises, including 1,700 software companies and 3.5 million developers, depend
on Progress to achieve their goals—with confidence. Learn more at www.progress.com.

© 2022 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.
Rev 2022/01 RITM0140982

Worldwide Headquarters

Progress, 14 Oak Park,
Bedford, MA 01730 USA
Tel: +1-800-477-6473
www.progress.com

 facebook.com/getchefdotcom
 twitter.com/chef
 youtube.com/getchef

 linkedin.com/company/chef-software
 learn.chef.io
 github.com/chef
 twitch.tv/chefsoftware

Resources
Learning

Chef on AWS: https://learn.chef.io/tracks/chef-on-aws#/

Chef on Microsoft Azure: https://learn.chef.io/tracks/chef-on-azure#/

Documentation

Test Kitchen: https://docs.chef.io/kitchen.html

Knife Plugins: https://docs.chef.io/plugin_knife.html

InSpec AWS Resources: https://www.inspec.io/docs/reference/resources/#aws-resources

InSpec Azure Resources: https://www.inspec.io/docs/reference/resources/#azure-resources

Chef AWS Cookbook: https://supermarket.chef.io/cookbooks/aws

Chef Azure Cookbook: https://supermarket.chef.io/cookbooks/microsoft_azure

Chef GCP Cookbooks: https://supermarket.chef.io/users/googlecloudplatform

Related Reading

Cloud Migration Solutions Page: https://www.chef.io/solutions/cloud-migration/

Webinar: Successfully Migrate to the Cloud with Chef and AWS: https://blog.chef.

io/2018/02/08/successfully-migrate-cloud-chef-aws/

Blog: InSpec 2.0 Cloud Resources Mini-Tutorial: https://blog.chef.io/2018/02/20/inspec-2-0-

cloud-resources-mini-tutorial/

https://learn.chef.io/tracks/chef-on-aws%23/
https://learn.chef.io/tracks/chef-on-azure%23/
https://docs.chef.io/kitchen.html
https://docs.chef.io/plugin_knife.html
https://www.inspec.io/docs/reference/resources/#aws-resources
https://www.inspec.io/docs/reference/resources/#azure-resources
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/microsoft_azure
https://supermarket.chef.io/users/googlecloudplatform
https://www.chef.io/solutions/cloud-migration/
https://blog.chef.io/2018/02/08/successfully-migrate-cloud-chef-aws/
https://blog.chef.io/2018/02/08/successfully-migrate-cloud-chef-aws/
https://blog.chef.io/2018/02/20/inspec-2-0-cloud-resources-mini-tutorial/
https://blog.chef.io/2018/02/20/inspec-2-0-cloud-resources-mini-tutorial/

